首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This paper deals with the design and implementation of a double wishbone front suspension for a vineyard–orchard tractor, developed in conjunction with a major tractor brand.To date, independent front suspensions are only found on commercial tractors over 150 kW. A front suspended axle is recognized as a popular option in improving tractor ride performance on larger vehicles. Despite their narrow track, vineyard–orchard tractors are required to have good lateral stability and stability on slopes (i.e. at least 28° rollover angle) and an extremely tight turning diameter for a 4WD vehicle (less than 7 m).The discussion is concered with retrofitting an existing vehicle with a double wishbone front suspension.This paper focuses on the layout and kinematic analysis phases of the design process. These were conducted in collaboration with the vehicle manufacturer to demonstrate suspension feasibility in terms of available space and correct kinematic layout.The final kinematic turning diameter obtained is about 6.4 m, with a ±65 mm suspension travel available. The roll centre height value is not very sensitive to steering (about −95 mm excursion in the Z axis from no-steer position to full steer).  相似文献   

2.
Although it is well known that properly used Rollover Protective Structures (ROPS) can virtually prevent agricultural tractor rollover fatalities, the U.S. still has hundreds of these fatalities per year. An estimated 1.6 million tractors are not equipped with ROPS. Many of these tractors do not have ROPS commercially available although they were originally designed to support a ROPS. Some tractors have foldable ROPS that are not used properly. Other ROPS, although meet appropriate performance standards, are not effective at eliminating continuous rolls.To meet this need, a Computer-based ROPS Design Program (CRDP) was developed to quickly generate ROPS designs based on agricultural tractor weights and dimensions. The ROPS designed with the CRDP for the Allis Chalmers 5040 tractor successfully passed the SAE J2194 static longitudinal, transverse, and vertical tests. A simple foldable ROPS lift assist was designed and tested to ease in the raising and lowering of ROPS; decreasing the raising torque from 90 Nm to less than 50 Nm, while also lowering the resisting torque to lower the ROPS. A model to determine the critical ROPS height CRH based on off-road vehicle dimensions and center of gravity (CG) height was developed and evaluated.  相似文献   

3.
Vertical wheel load and tire pressure are both easily managed parameters which play a significant role in tillage operations for limiting slip which involves energy loss. This aspect to a great extent affects the fuel consumption and the time required for soil tillage. The main focus of this experiment was to determine the effect on the wheels’ slip, the fuel consumption and the field performance of a tractor running in a single-wheel 4WD driving system and in a dual-wheel 2WD driving system, due to the variations in air pressure of the tires as well as in the ballast mass. With no additional mass, the lowest fuel consumption was reached by a tractor with the least air pressure in the tires and running in a dual-wheel 2WD driving system. It was determined that for a stubble cultivation with a medium-power (82.3 kW) tractor running in a dual-wheel 2WD driving system, the hourly fuel consumption was by 1.15 L h−1 (or 7.3%), the fuel consumption per hectare by 0.35 L ha−1 (or 7.9%) and the field performance by 0.05 ha h−1 (or 1.25%) lower compared to a single-wheel 4WD driving system, when driving wheels’ slip for both modes was the same, i.e., at 8–12%.  相似文献   

4.
A smooth steel roller was tested in an indoor soil bin. Subsoil forces and displacements were measured at depths of 50, 100, 150, and 200 mm. Roller operating conditions included roller travel speed, the vertical load, and number of passes. Three travel speeds, 1, 3, and 5 km h?1 and three vertical loads 20, 40, and 60 kN were tested. The draft needed to move the roller was also recorded. For multiple passes, subsoil forces were increased by 30% if vertical load increased by 50%; while the roller draft increased by 20%. For a single pass, no significant differences detected between the subsoil forces at speeds of 1 and 3 km h?1; when the roller traveled at 5 km h?1 with a vertical load of 60 kN, the subsoil force was approximately reduced by 30% compared to those at lower travel speeds. For both single and multiple passes, increasing travel speed did not significantly increase subsoil forces and displacement below 150-mm depth; however, the power required to drive the roller was significantly increased. Higher travel speed was more effective in creating larger subsoil displacement and subsoil forces within 100-mm from the soil surface. For similar effects below 100-mm, lower travel speed was found appropriate.  相似文献   

5.
The operation of off-road vehicles during military training exercises can affect the environmental conditions of training lands by removing or disturbing vegetation. To quantify the impact of vehicle based military training, global positioning system (GPS)-based vehicle tracking systems were used to characterize the movement of vehicles during live training exercises. Methods were developed to spatially estimate the tracking intensity (number of vehicle passes per area) resulting from the training exercises. This method was then combined with previous developed methods that identified off-road trail formation and vehicle dynamic properties to quantify the overall training mission impacts of specific training events on installation resources. This approach to characterizing training impacts results in mission impact profiles that more accurately quantify live training mission impacts.Search radius and output grid size are important parameters of the proposed traffic intensity approximation method. Traffic intensities estimated using a variety of search radii and grid sizes were compared. Results indicated that a 10 m search radius and a 10-by-10 m output grid size worked the best for the study dataset. Approximately, 89% accuracy was found for traffic intensity (number of passes) estimation when using a 10 m search radius and a 10-by-10 m output grid size.  相似文献   

6.
A continuous dichotomous beta gauge monitor was used to characterize the hourly content of PM2.5, PM10–2.5, and Black Carbon (BC) over a 12-month period in an urban street canyon of Hong Kong. Hourly vehicle counts for nine vehicle classes and meteorological data were also recorded. The average weekly cycles of PM2.5, PM10–2.5, and BC suggested that all species are related to traffic, with high concentrations on workdays and low concentrations over the weekends. PM2.5 exhibited two comparable concentrations at 10:00–11:00 (63.4 μg/m3) and 17:00–18:00 (65.0 μg/m3) local time (LT) during workdays, corresponding to the hours when the numbers of diesel-fueled and gasoline-fueled vehicles were at their maximum levels: 3179 and 2907 h−1, respectively. BC is emitted mainly by diesel-fueled vehicles and this showed the highest concentration (31.2 μg/m3) during the midday period (10:00–11:00 LT) on workdays. A poor correlation was found between PM2.5 concentration and wind speed (R = 0.51, P-value > 0.001). In contrast, the concentration of PM10–2.5 was found to depend upon wind speed and it increased with obvious statistical significance as wind speed increased (R = 0.98, P-value < 0.0001).  相似文献   

7.
Soil compaction can occur due to machine traffic and is an indicator of soil physical structure degradation. For this study 3 strain transducers with a maximum displacement of 5 cm were used to measure soil compaction under the rear tire of MF285 tractor. In first series of experiments, the effect of tractor traffic was investigated using displacement transducers and cylindrical cores. For the second series, only strain transducers were used to evaluate the effect of moisture levels of 11%, 16% and 22%, tractor velocities of 1, 3 and 5 km/h, and three depths of 20, 30 and 40 cm on soil compaction, and soil behavior during the compaction process was investigated. Results showed that no significant difference was found between the two methods of measuring the bulk density. The three main factors were significant on soil compaction at a probability level of 1%. The mutual binary effect of moisture and depth was significant at 1%, and the interaction of moisture, velocity, and depth were significant at 5%. The soil was compressed in the vertical direction and elongated in the lateral direction. In the longitudinal direction, the soil was initially compressed by the approaching tractor, then elongated, and ultimately compressed again.  相似文献   

8.
This research focuses on acquiring accurate flow boiling heat transfer data and flow pattern visualization for three refrigerants, R134a, R236fa and R245fa in a 1.030 mm channel. We investigate trends in the data, and their possible mechanisms, for mass fluxes from 200 to 1600 kg/m2s, heat fluxes from 2.3 kW/m2 to 250 kW/m2 at Tsat = 31 °C and ΔTsub from 2 to 9 K. The local saturated flow boiling heat transfer coefficients display a heat flux and a mass flux dependency but no residual subcooling influence. The changes in heat transfer trends correspond well with flow regime transitions. These were segregated into the isolated bubble (IB) regime, the coalescing bubble (CB) regime, and the annular (A) regime for the three fluids. The importance of nucleate boiling and forced convection in these small channels is still relatively unclear and requires further research.  相似文献   

9.
Tractor manufacturers already offer engine - transmission control systems in which the operator decides whether low fuel consumption or high output is the priority and let a control system provide engine and transmission management. Less sophisticated tractors, as well as older equipment, still rely on the operator awareness upon what driving parameters most enhance efficiency. The objective of this study is to analyse the effect of driving parameters, namely forward speed and engine speed on the overall power efficiency. The overall power efficiency of a tractor performing drawbar work is the ratio between the output power at the drawbar and the energy equivalent of the fuel consumed per unity of time. Experimental data obtained from tractor field tests in real farm conditions, within the range of 0.2-0.4 for the vehicle traction ratio (ratio of the drawbar pull to the total weight of the tractor), show that increments of 10-20% on the overall power efficiency can be obtained by throttling down from 2200 min−1 to 1750 min−1 (idle speed). The reduction in ground speed and therefore in the work rate, may be overcome by shifting up the transmission ratio.  相似文献   

10.
《Journal of Terramechanics》2004,41(2-3):139-149
The approach used here consists of an axisymmetric gage with a tapered exterior. Raw outputs are normal stress in three directions in the plane perpendicular to the gage axis of symmetry. From these outputs, the time history of the complete state of stress in this plane can be determined. Of special interest is the plane of symmetry which is the vertical plane centered on one side of a wheeled or tracked vehicle proceeding in a straight line. The gage was placed from a berm on the side of the vehicle path, approximately 4 ft horizontally and at approximately 9 in. below the ground surface. Test vehicles were a 4 × 4 wheeled vehicle and a M113A2 armored personnel carrier. The measured stress results are largely consistent with expectations.  相似文献   

11.
This paper presents Large Eddy Simulations (LES) of flow around a four-vehicle platoon when one of the platoon members was forced to undergo in-line oscillations. The LES were made at the Reynolds number of 105 based on the height of the vehicles. Combinations of two different frequencies corresponding to non-dimensional frequencies at the Strouhal numbers St1 = 0.025 and St2 = 0.013 and two oscillation amplitudes were used in this study. The methodology was validated by comparisons with data from previous experimental investigations. In order to highlight the dynamic effects, comparisons were made with steady results on a single vehicle and on a four-vehicle platoon. Large differences were found in the flow structures between quasi-steady and dynamic results. Furthermore, the behavior of the drag coefficient of the upstream neighbor of the oscillating model was investigated.  相似文献   

12.
Mars Exploration Rovers (MERs) experienced mobility problems during traverses. Three-dimensional discrete element method (DEM) simulations of MER wheel mobility tests for wheel slips of i = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99 were done to examine high wheel slip mobility to improve the ARTEMIS MER traverse planning tool. Simulations of wheel drawbar pull and sinkage MIT data for i  0.5 were used to determine DEM particle packing density (0.62) and contact friction (0.8) to represent the simulant used in mobility tests. The DEM simulations are in good agreement with MIT data for i = 0.5 and 0.7, with reasonable but less agreement at lower wheel slip. Three mobility stages include low slip (i < 0.3) controlled by soil strength, intermediate slip (i  0.3–0.6) controlled by residual soil strength, and high slip (i > 0.6) controlled by residual soil strength and wheel sinkage depth. Equilibrium sinkage occurred for i < 0.9, but continuously increased for i = 0.99. Improved DEM simulation accuracy of low-slip mobility can be achieved using polyhedral particles, rather than tri-sphere particles, to represent soil. The DEM simulations of MER wheel mobility can improve ARTEMIS accuracy.  相似文献   

13.
Modeling and simulation of vehicles in sand is critical for characterizing off-road mobility in arid and coastal regions. This paper presents improved algorithms for calculating sinkage (z) of wheeled vehicles operating on loose dry sand. The algorithms are developed based on 2737 tests conducted on sand with 23 different wheel configurations. The test results were collected from Database Records for Off-road Vehicle Environments (DROVE), a recently developed database of tests conducted with wheeled vehicles operating in loose dry sand. The study considers tire diameters from 36 to 124 cm with wheel loads of 0.19–36.12 kN. The proposed algorithms present a simple form of sinkage relationships, which only require the ratio of the wheel ground contact pressure and soil strength represented by cone index. The proposed models are compared against existing closed form solutions defined in the Vehicle Terrain Interface (VTI) model. Comparisons suggest that incorporating the proposed models into the VTI model can provide comparable predictive accuracy with simpler algorithms. In addition to simplicity, it is believed that the relationship between cone index (representing soil shear strength) and the contact pressure (representing the applied pressure to tire-soil interface) can better capture the physics of the problem being evaluated.  相似文献   

14.
Suitability of using rubber tracks as traction device in power tillers replacing pneumatic tires was studied using an experimental setup consisting of a track test rig for mounting a 0.80 m × 0.1 m rubber track and a loading device for applying different drawbar pulls. Tests were conducted in the soil bin filled with lateritic sandy clay loam soil at an average soil water content of 9% dry basis by varying the cone index from 300 to 1000 kPa. Data on torque, pull and Travel Reduction Ratio (TRR) were acquired using sensors and data acquisition system for evaluating its performance. Maximum tractive efficiency of the track was found to be in the range of 77–83% corresponding to a TRR of 0.12–0.045. The Net Traction Ratio (NTR) at maximum tractive efficiency was found to be between 0.49 and 0.36.Using non-linear regression technique, a model for Gross Traction Ratio (GTR) was developed and it could predict the actual values with a maximum variation of 6% as compared to an average variation of 50% with Grisso’s model. Based on this model, tractive efficiency design curves were plotted to achieve optimum tractive performance of track for any given soil condition.  相似文献   

15.
The desirable weight-to-axle power ratio for agricultural tractors is determined by the necessity for the optimum utilisation of the available axle power to produce the required drawbar pull at a preselected slip. For a vehicle designed to operate in a given speed range, the weight-to-axle power ratio should be within a particular limit, so that a specific level of conversion efficiency can be maintained. In this paper attempts have been made to select suitable tyres for Indian two-wheel drive tractors operating in sandy clay loam soils on the basis of weight-to-power utiisation and maximum pull-to-optimum weight ratio at a preselected slip using the developed traction prediction equations. A comparison has also been made between the desired and actual weight on a single traction wheel and suitable tyre and tyre normally fitted in Indian two wheel drive tractors up to 35 kW.  相似文献   

16.
The transient motion of an anisotropic elastic bimaterial due to a line force or a line dislocation is studied. The bimaterial is assumed to be at rest and stress-free for t < 0. The line source is applied at t = 0 and maintained for t > 0. A formulation which is an extension to Stroh’s formalism for anisotropic elastostatics is employed. The general solution is expressed in terms of the eigenvalues and eigenvectors of a related eigenvalue problem. The method is used to obtain the analytic solutions without the need of performing integral transforms. Numerical examples of the GaAs bimaterial due to a line force or dislocation are presented for illustration.  相似文献   

17.
We describe here the evolution of lightweight, high-efficiency fuel sleds for Polar over-snow traverses. These sleds consist of flexible bladders strapped to sheets of high molecular weight polyethylene. They cost 1/6th, weigh 1/10th and triple the fuel delivered per towing tractor compared with steel sleds. An eight-tractor fleet has conducted three 3400-km roundtrips to South Pole with each traverse delivering ~320,000 kg of fuel while emitting <1% the pollutants, consuming 1/2 the fuel and saving ~$1.6 M compared with aircraft resupply. A two-tractor fleet in Greenland recently delivered ~83,000 kg of fuel in bladder sleds to Summit with similar benefits. Performance monitoring has revealed that bladder-sled towing resistance is largely governed by sliding friction, which can start high and drop in half over the first 30 min of travel. Frictional heating probably produces a thin water layer that lubricates the sled–snow interface. Consequently, towing resistance depends on the thermal budget of the sled. For example, black fuel bladders increase solar gain and thus decrease sled resistance; data suggest they could double again the fuel delivered per tractor. The outstanding efficiency and low cost of these sleds has transformed fuel delivery to Polar research stations.  相似文献   

18.
Advances have been made to agricultural tractors to improve their ride comfort. However, the ride comfort of tractors is relatively low compared to that of passenger vehicles. Many researchers have developed various types of suspension for tractors. While most studies have focused on the geometry of the suspension, few studies have been carried out on the development of a control algorithm for tractor suspension.In this paper, to improve the ride comfort of an agricultural tractor, a hydro-pneumatic suspension model with a semi-active suspension control is developed with computer simulation, and the effectiveness of the suspension is evaluated before the vehicle is equipped with the suspension and placed into production.An optimal control algorithm for the semi-active suspension of the tractor is developed using a linear quadratic Gaussian. In the simulation, a hydro-pneumatic suspension system model is developed using SimulationX and is applied to a full vehicle model using MATLAB/Simulink. The suspension is assessed by experiments and simulations. The ride comfort using the ride comfort index according to ISO 2631 is evaluated by comparing a vehicle with a passive cab suspension to that with a hydro-pneumatic suspension applied with the semi-active control.  相似文献   

19.
An optical measurement method using image processing for two-phase flow pattern characterization in minichannel is developed. The bubble frequency, the percentage of small bubbles as well as their velocity are measured. A high-speed high-definition video camera is used to measure these parameters and to identify the flow regimes and their transitions. The tests are performed in a 3.0 mm glass channel using saturated R-245fa at 60 °C (4.6 bar). The mass velocity is ranging from 100 to 1500 kg/m2 s, the heat flux is varying from 10 to 90 kW/m2 and the inlet vapor quality from 0 to 1. Four flow patterns (bubbly flow, bubbly–slug flow, slug flow and annular flow) are recognized. The comparison between the present experimental intermittent/annular transition lines and five transition lines from macroscale and microscale flow pattern maps available in the literature is presented. Finally, the influence of the flow pattern on the heat transfer coefficient is highlighted.  相似文献   

20.
Four tire types (A, block-shape tread; B, rib-shape tread; C, low-lug tread; D, high-lug tread) used to harvest and transport sugarcane were compared regarding the compaction induced to the soil. Tires were tested at three inflation pressures (207, 276, 345 kPa) and six loads ranging from 20 to 60 kN/tire. Track impressions were traced, and 576 areas were measured to find equations relating inflation pressure, load, contact surface and pressure. Contact surface increased with increasing load and decreasing inflation pressure; however, the contact pressure presented no defined pattern of variation, with tire types A and B generating lower contact pressure. The vertical stresses under the tires were measured and simulated with sensors and software developed at the Colombian Sugarcane Research Center (Cenicaña). Sensors were placed at 10, 30, 50 and 70 cm depth. Tire types A and B registered vertical stresses below 250 kPa at the surface. These two tires were better options to reduce soil compaction. The equations characterizing the tires were introduced into a program to simulate the vertical stress. Simulated and measured stresses were adjusted in an 87–92% range. Results indicate a good correlation between the tire equations, the vertical stress simulation and the vertical stress measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号