首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
High density of silicon nanowires (SiNWs) were synthesized by a hot-wire assisted plasma enhanced chemical vapor deposition technique. The structural and optical properties of the as-grown SiNWs prepared at different rf power of 40 and 80 W were analyzed in this study. The SiNWs prepared at rf power of 40 W exhibited highly crystalline structure with a high crystal volume fraction, XC of ~82% and are surrounded by a thin layer of SiOx. The NWs show high absorption in the high energy region (E>1.8 eV) and strong photoluminescence at 1.73 to 2.05 eV (red–orange region) with a weak shoulder at 1.65 to 1.73 eV (near IR region). An increase in rf power to 80 W reduced the XC to ~65% and led to the formation of nanocrystalline Si structures with a crystallite size of <4 nm within the SiNWs. These NWs are covered by a mixture of uncatalyzed amorphous Si layer. The SiNWs prepared at 80 W exhibited a high optical absorption ability above 99% in the broadband range between 220 and ~1500 nm and red emission between 1.65 and 1.95 eV. The interesting light absorption and photoluminescence properties from both SiNWs are discussed in the text.  相似文献   

2.
Nickel (Ni) and cobalt (Co) metal nanowires were fabricated by using an electrochemical deposition method based on an anodic alumina oxide (Al2O3) nanoporous template. The electrolyte consisted of NiSO4 · 6H2O and H3BO3 in distilled water for the fabrication of Ni nanowires, and of CoSO4 · 7H2O with H3BO3 in distilled water for the fabrication of the Co ones. From SEM and TEM images, the diameter and length of both the Ni and Co nanowires were measured to be ∼ 200 nm and 5–10 μm, respectively. We observed the oxidation layers in nanometer scale on the surface of the Ni and Co nanowires through HR–TEM images. The 3 MeV Cl2+ ions were irradiated onto the Ni and Co nanowires with a dose of 1 × 1015 ions/cm2. The surface morphologies of the pristine and the 3 MeV Cl2+ ion-irradiated Ni and Co nanowires were compared by means of SEM, AFM, and HR–TEM experiments. The atomic concentrations of the pristine and the 3 MeV Cl2+ ion-irradiated Ni and Co nanowires were investigated through XPS experiments. From the results of the HR–TEM and XPS experiments, we observed that the oxidation layers on the surface of the Ni and Co nanowires were reduced through 3 MeV Cl2+ ion irradiation.  相似文献   

3.
Two kinds of ferromagnetic SiC based nanowires with and without Ni catalyst were successfully synthesized by employing microwave heating method. The comprehensive characterizations and vibrating sample magnetometer (VSM) have been applied to investigate the micro-structures and magnetic properties of as-grown nanowires. For the nanowires synthesized without using Ni catalyst, the diameters and lengths are in the range of 20–60 nm and dozens of micrometers, respectively. Particularly, the results of transmission electron microscopy (TEM) show that the nanowires consist of SiC core and SiOx shell. The SiC/SiOx coaxial nanowires exhibit room-temperature ferromagnetism with saturation magnetization (Ms) of 0.2 emu/g. As to the nanowires obtained using Ni catalyst, the scanning electron microscopy (SEM) results indicate that the Ni catalyzed nanowires have a nano-particle attached on the tip and a uniform diameter of approximately 50 nm. The vapor-liquid-solid (VLS) growth mechanism can be used to explain the formation of the Ni catalyzed nanowires. The detection result of VSM indicates that the Ni catalyzed nanowires possess the paramagnetism and the ferromagnetism, simultaneously. The enhancement of the ferromagnetism, compared with the SiC/SiOx coaxial nanowires, could be attributed to the Ni2Si and NiSi phases.  相似文献   

4.
The effect of orientation on the frequency of the radial breathing mode (RBM) of silicon nanowires (SiNWs) is investigated by means of the first principles Density Functional Theory approach through the generalized gradient approximation. We compare the RBM frequency of SiNWs orientated in three different directions, [0 0 1], [1 1 1], and [1 1 0]. The RBM is observed by the calculation of the phonon band structure and density of states of the SiNWs through the supercell finite displacement method. Results show that the SiNWs are stable in the three chosen directions since there are no negative frequencies in their phonon band structure and density of states. A clear dependence of the RBM frequency with respect to the growth direction of the nanowires and the phonon confinement was observed as the RBM frequency decreased with an inverse power law in each nanowire direction, with the fitting parameters dependent on the growth direction. These results are important since they could be used as a fingerprint to identify them within different spectroscopy techniques such as Raman.  相似文献   

5.
We have studied CO interaction with SiO2/Si system at high temperature (~ 1100 °C) and 350 mbar by core-level photoemission. Even for short annealing time (5 min) the signal from Si2p and C1s core levels shows a clear change upon CO treatment. Shifted components are attributed to formation of SiC. This is confirmed by TEM imaging which further shows that the silicon carbide is in the form of nano-crystals of the 3C polytype. Photoemission spectroscopy moreover reveals the formation of silicon oxicarbide which could not be evidenced by other methods. Combining these results with previous Nuclear Resonance Profiling study gives a deeper insight into the mechanisms involved in the nanocrystals growth and especially for the reaction equation leading to SiC formation. We show that CO diffuses as a molecule through the silica layer and reacts with the silicon substrate according the following reaction: 4 CO + 4 Si  SiO2 + 2SiC + SiO2C2.  相似文献   

6.
The present study demonstrates ultrasound-induced cell injury using a nickel–titanium dioxide (Ni–TiO2) alloy plate as a sonocatalyst and a cell culture surface. Ultrasound irradiation of cell-free Ni–TiO2 alloy plates with 1 MHz ultrasound at 0.5 W/cm2 for 30 s led to an increased generation of hydroxyl (OH) radicals compared to nickel–titanium (Ni–Ti) control alloy plates with and without ultrasound irradiation. When human breast cancer cells (MCF-7 cells) cultured on the Ni–TiO2 alloy plates were irradiated with 1 MHz ultrasound at 0.5 W/cm2 for 30 s and then incubated for 48 h, cell density on the alloy plate was reduced to approximately 50% of the controls on the Ni–Ti alloy plates with and without ultrasound irradiation. These results indicate the injury of MCF-7 cells following sonocatalytic OH radical generation by Ni–TiO2. Further experiments demonstrated cell shrinkage and chromatin condensation after ultrasound irradiation of MCF-7 cells attached on the Ni–TiO2 alloy plates, indicating induction of apoptosis.  相似文献   

7.
T.S. Zhang  Z.H. Du  S. Li  L.B. Kong  X.C. Song  J. Lu  J. Ma 《Solid State Ionics》2009,180(23-25):1311-1317
The sintering, grain growth and ionic conductivities (especially the grain-boundary (GB) conductivity), of 8YSZ electrolytes with various silica levels (~ 30 ppm, ~ 500 ppm and ~ 3000 ppm), doped with 1 at% transitional metal oxides (TMOs), have been systematically investigated by means of dilatometer, electron microscopy and impedance analyzer. It is confirmed that small additions of TMOs (i.e., Fe, Mn, Co or Ni) promote the densification and grain growth of both the pure and Si-containing 8YSZ. The effect of TMOs on the ionic conductivities could be negative or positive, relying on the type of TMOs, sintered density and impurity level. For the dense and pure 8YSZ (with ~ 30 ppm SiO2), the addition of 1 at% TMOs led to a reduction in grain interior (GI) conductivity by ~ 25–33% with little effect on the GB conduction. For the impure 8YSZ (with ~ 500 ppm or 3000 ppm SiO2), except for FeO1.5, the other TMOs (i.e., Mn, Co or Ni) are extremely detrimental to the total conductivity by significantly reducing the GB conduction. Moreover, it is also found that the GB conductivity of the impure 8YSZ doped with Co or Ni is less sensitive to sintering temperature. FeO1.5 showed a scavenging effect on SiO2 in the impure 8YSZ, which is specially beneficial to the total conductivity of samples with higher silica levels and/or sintered at relatively low temperatures.  相似文献   

8.
SiC nanowires with fins have been prepared by chemical vapor deposition in a vertical vacuum furnace by using a powder mixture of milled Si and SiO2 and gaseous CH4 as the raw materials. The products were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). These investigations confirm that the nanowires with fins are cubic β-SiC. The diameter of the fins is about 100–120 nm and the diameter of the inner core stems is about 60–70 nm. The formation process of the β-SiC nanowires with fins is analyzed and discussed briefly.  相似文献   

9.
We have experimentally evaluated attenuation lengths (AL) of photoelectrons traveling in compact and micro and mesoporous (~ 45% voids) SiO2 thin films with high (8.2–13.2 keV) kinetic energies. The films were grown on polished Si(100) wafers. ALs were deduced from the intensity ratio of the Si 1s signal from the SiO2 film and Si substrate using the two-peaks overlayer method. We obtain ALs of 15–22 nm and 23–32 nm for the compact and porous SiO2 films for the range of kinetic energies considered. The observed AL values follow a power law dependence on the kinetic energy of the electrons where the exponent takes the values 0.81 ± 0.13 and 0.72 ± 0.12 for compact and porous materials, respectively.  相似文献   

10.
Amorphous Si/SiO2(a-Si/SiO2) superlattices have been fabricated by the magnetron sputtering technique. The superlattice with an Si layer thickness of 1.8 nm has been characterized by transmission electron microscopy (TEM). The result indicates that most of the regions in the Si layer consist of amorphous phase, while regular structure appears in some local regions. This is in agreement with the Raman scattering spectroscopy. The optical absorption spectrum and photoluminescence (PL) spectrum have been measured. Moreover, the third-order optical nonlinearity χ(3)of this superlattice has been measured. To our knowledge, this is the first investigation of the nonlinear absorption and refractive index of an a-Si/SiO2superlattice using the Z -scan technique. The real and imaginary parts of χ(3)have been found to be 1.316  ×  10  7eus and   5.596  ×  10  7eus, respectively, which are about two orders of magnitude greater than those of porous silicon. The results may be attractive for potential application in electro-optics devices.  相似文献   

11.
Ge ions of 100 keV were implanted into a 120 nm-thick SiO2 layer on n-Si at room temperature while those of 80 keV were into the same SiO2 layer on p-Si. Samples were, subsequently, annealed at 500°C for 2 h to effectively induce radiative defects in the SiO2. Maximum intensities of sharp violet photoluminescence (PL) from the SiO2/n-Si and the SiO2/p-Si samples were observed when the samples have been implanted with doses of 1×1016 and 5×1015 cm−2, respectively. According to current–voltage (IV) characteristics, the defect-related samples exhibit large leakage currents with electroluminescence (EL) at only reverse bias region regardless of the type of substrate. Nanocrystal-related samples obtained by an annealing at 1100°C for 4 h show the leakage at both the reverse and the forward region.  相似文献   

12.
《Solid State Ionics》2006,177(26-32):2601-2603
New Li+ ion-conductive glasses Li2S–B2S3–Li4SiO4 were synthesized by rapid quenching, and they were transformed into glass ceramics by heat treatment. The heat treatment increased the ionic conductivities of the Li4SiO4-doped glasses, and the highest ionic conductivity observed in the system was 1.0 × 10 3 S cm 1 at room temperature. The glass ceramics were highly stable against electrochemical oxidation with a wide electrochemical window of 10 V.  相似文献   

13.
《Applied Surface Science》2005,239(3-4):464-469
X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and work-function measurements have been used to investigate the Y/SiO2/Si(1 0 0) interfaces in situ as a function of annealing temperature. The results show that yttrium is very reactive with SiO2 and can react with SiO2 to form Y silicate and Y2O3 even at room temperature. Annealing leads to the continual growth of the Y silicate. Two distinctive reaction mechanisms are suggested for the annealing processes below and above 600 K. The reaction between metallic yttrium and SiO2 dominates the annealing processes below 600 K, while at annealing temperatures above 600 K, a reaction between the new-formed Y2O3 and SiO2 becomes dominant. No Y silicide is formed during Y deposition and subsequent annealing processes. UPS valence-band spectra indicate the silicate layer is formed at the top surface. After 1050 K annealing, a Y-silicate/SiO2/Si structure free of Y2O3 is finally formed.  相似文献   

14.
In this investigation the composite SiOx〈Ti〉 films were prepared by the thermal evaporation of a mixture of silicon oxide (SiO2) and Тi powders. The optical transmission of the films in the IR spectral range and their temperature-sensitive properties are studied. By varying the contents of the metal in vaporizer and time of evaporation it is possible to obtain SiOx〈Ti〉 layers with resistance (for monopixel of 0.8 × 1 mm) from tens kOhms to MOhms and a value of the temperature coefficient of resistance (TCR) is equal to −2.22% K−1. IR spectrum of SiOx〈Ti〉 film is characterized by a broad absorption band in the range of 8–12 μm which is associated with the Si–O–Si stretching mode.Investigations of the effect of gamma irradiation on SiOx〈Ti〉 films have shown that their temperature-sensitive properties, in particular TCR does not change up to a dose of 106 Gy.These results suggest that SiOx〈Ti〉 films can be used as materials for production of radiation-resistant thermosensitive detectors operated in radiation fields of γ-radiation and combining functions of IR-absorption and formation of an electric signal.  相似文献   

15.
《Current Applied Physics》2010,10(2):636-641
In this paper, a very simple procedure was presented for the reproducible synthesis of large-area SnO2 nanowires (NWs) on a silicon substrate by evaporating Sn powders at temperatures of 700, 750, and 800 °C. As-obtained SnO2 NWs were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. They revealed that the morphology of the NWs is affected by growth temperature and the SnO2 NWs are single-crystalline tetragonal. The band gap of the NWs is in the range of 4.2–4.3 eV as determined from UV/visible absorption. The NWs show stable photoluminescence with an emission peak centered at around 620 nm at room-temperature. The sensors fabricated from the SnO2 NWs synthesized at 700 °C exhibited good response to LPG (liquefied petroleum gas) at an operating temperature of 400 °C.  相似文献   

16.
《Solid State Ionics》2006,177(1-2):29-35
Microstructure and local structure of spinel LiNixMn2  xO4 (x = 0, 0.1 and 0.2) were studied using X-ray diffraction (XRD) and a combination of X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge spectroscopy (XANES) and Raman scattering with the aim of getting a clear picture of the local structure of the materials responsible for the structural stability of LiNixMn2  xO4. XRD study showed that Ni substitution caused the changes of the materials’ microstructure from the view of the lattice parameter, mean crystallite size, and microstrain. XPS and XANES studies showed the Ni oxidation state in LiNixMn2  xO4 was larger than + 2, and the Mn oxidation state increased with Ni substitution. The decrease of the intensity of the 1s → 4pz shakedown transition on the XANES spectra indicated that Ni substitution suppressed the tetragonal distortion of the [MnO6] octahedron. The Mn(Ni)–O bond in LiNixMn2  xO4, which is stronger than the Mn–O bond in LiMn2O4 was responsible for the blue shift of the A1g Raman mode and could enhance the structural stability of the [Mn(Ni)O6] octahedron.  相似文献   

17.
The chemisorption of CO2 on the pure Ni (1 1 1) and doped Ni (1 1 1) by transition metal (Co, Rh, Cr, Ce, La) were investigated by using the generalized gradient approximation (GGA) and the Perdew–Burke–Emzerhof (PBE) functional. The optimized structure of doped metal surface showed that Rh, Cr, Ce, La atoms upward shift from the surface of Ni (1 1 1) plane, while the atom radius of Co is the minimum offset which lead to the height is ?0.03 Å. The ability of CO2 chemisorption follows the order of La/Ni (1 1 1) > Ce/Ni (1 1 1) > Cr/Ni (1 1 1) > Co/Ni (1 1 1) > pure Ni (1 1 1). It is exothermic when CO2 chemisorbed on Cr/Ni (1 1 1) Ce/Ni (1 1 1) and La/Ni (1 1 1), while it is endothermic on the Co/Ni (1 1 1) and pure Ni (1 1 1). CO2 molecular chemisorbed on all the metal surfaces are negatively charged, result from the electron transfer between the metal surfaces and the CO2 molecular. The transition metals La, Ce and Cr can promote the transformation of electron and make the CO bonds longer than the pure Ni (1 1 1). We also analyzed the dissociation of CO2 on the Ni-based surface and found that the La/Ni (1 1 1) surface is the preference surface for the dissociation of CO2, which improved the ability to hinder carbon deposition.  相似文献   

18.
As grown ZnO:Si nanocomposites of different compositional ratios were fabricated by thermal evaporation techniques. These films were subjected to post-deposition annealing under high vacuum at a temperature of 250 °C for 90 min. The photoluminescence (PL) spectra of annealed samples have shown marked improvements both in terms of intensity and broadening. Structural and Raman analyses show formation of a Zn–Si–O shell around ZnO nanoclusters wherein on heating Zn2SiO4 compound forms resulting in huge UV, orange and red peaks at 310, 570 and 640 nm in PL. The new emissions due to Zn2SiO4 completes white light spectrum. The study not only suggests that 1:2 ratio is the best suited for material manipulation but also shows process at the interface of ZnO nanoclusters and silicon matrix leads to new PL emissions.  相似文献   

19.
Green light emitting Mn2+ doped Zn2SiO4 particles embedded in SiO2 host matrix were synthesized by a sol–gel method. After the incorporation of ZnO:Mn nanoparticles in a silica monolith using sol–gel method with supercritical drying of ethyl alcohol in two steps, it was heat treated in air at 1200 °C for 2 h in order to obtain the SiO2/α-Zn2SiO4:Mn nanocomposites. The microstructure of phosphor crystals was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). XRD results indicate that the pure phase α-Zn2SiO4 with rhombohedral structure was obtained after thermal treatment at 1200 °C. The SiO2-Zn2SiO4:Mn nanocomposites with a Mn doping concentration of 1.5 at% exhibit two broadband emissions in the visible range: a strong green emission at around 525 nm and a second one in the range between 560 and 608 nm. This nanocomposite with a Mn doping concentration of 0.05 shows the highest relative emission intensity. Upon 255 nm excitation, the luminescence decay time of the green emission of Zn2SiO4:Mn around 525 nm is 11 ms. The luminescence spectra at 525 nm (4T16A1) and lifetime of the excited state of Mn2+ ions-doped Zn2SiO4 nanocrystals are investigated.  相似文献   

20.
The luminescent properties of phosphors are sensitive to the size of phosphor particles. The commercial Y2SiO5:Tb3+ phosphors usually show relatively larger particle size (5–10 μm) due to the irregular morphology of rare earth oxide precursor and thus degrade the luminescent properties. In this paper, we report the Y2SiO5:Tb3+ phosphors synthesized from the uniform Tb-doped Y2O3 precursor by a homogeneous precipitation method. Compared with the commercial phosphors, the obtained Y2SiO5:Tb3+ phosphors manifest the uniform morphology with much smaller particles distributing from 0.8 μm to 1.9 μm. Consequently, the cathodoluminescent intensity under low excitation voltage (1–5 kV) was increased, demonstrating a strong green emission with a dominant wavelength of 545 nm. Our results indicate an effective way to develop the high-quality phosphors for field emission display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号