首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 963 毫秒
1.
Fe3O4/hydroxyapatite/graphene quantum dots (Fe3O4/HAP/GQDs) nanocomposite was synthesized and used as a novel magnetic adsorbent. This nanocomposite was characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetization property. The Fe3O4/HAP/GQDs was applied to pre-concentrate copper residues in Thai food ingredients (so-called “Tom Yum Kung”) prior to determination by inductively coupled plasma-atomic emission spectrometry. Based on ultrasound-assisted extraction optimization, various parameters affecting the magnetic solid-phase extraction, such as solution pH, amount of magnetic nanoparticles, adsorption and desorption time, and type of elution solvent and its concentration were evaluated. Under optimal conditions, the linear range was 0.05–1500 ng mL−1 (R2 > 0.999), limit of detection was 0.58 ng mL−1, and limit of quantification was 1.94 ng mL−1. The precision, expressed as the relative standard deviation of the calibration curve slope (n = 5), for intra-day and inter-day analyses was 0.87% and 4.47%, respectively. The recovery study of Cu for real samples was ranged between 83.5% and 104.8%. This approach gave the enrichment factor of 39.2, which guarantees trace analysis of Cu residues. Therefore, Fe3O4/HAP/GQDs can be a potential and suitable candidate for the pre-concentration and separation of Cu from food samples. It can easily be reused after treatment with deionized water.  相似文献   

2.
Spinel-type manganese oxide/porous carbon (Mn3O4/C) nanocomposite powders have been simply prepared by a thermal decomposition of manganese gluconate dihydrate under an Ar gas flow at above 600 °C. The structure and texture of the Mn3O4/C nanocomposite powders are investigated by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) equipped scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), selected area-electron diffraction (SA-ED), thermogravimetric and differential thermal analysis (TG-DTA) and adsorption/desorption of N2 gas at ?196 °C. The electrochemical properties of the nanocomposite powders in 1 M KOH aqueous solution are studied, focusing on the relationship between their structures and electrochemical capacitance.In the nanocomposite powders, Mn3O4 nano particles approximately 5 nm in size are dispersed in a porous carbon matrix. The nanocomposite powders prepared at 800 °C exhibit a high specific capacitance calculated from cyclic voltammogram of 350 and 600 F g?1 at a sweep rate of 1 and 0.1 mV s?1, respectively. The influence of the heating temperature on the structure and the electrochemical properties of nanocomposite powders is also discussed.  相似文献   

3.
Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) with much improved peroxidase-like activity were successfully prepared through an advanced reverse co-precipitation method under the assistance of ultrasound irradiation. The characterizations with XRD, BET and SEM indicated that the ultrasound irradiation in the preparation induced the production of Fe3O4 MNPs possessing smaller particle sizes (16.5 nm), greater BET surface area (82.5 m2 g?1) and much higher dispersibility in water. The particle sizes, BET surface area, chemical composition and then catalytic property of the Fe3O4 MNPs could be tailored by adjusting the initial concentration of ammonia water and the molar ratio of Fe2+/Fe3+ during the preparation process. The H2O2-activating ability of Fe3O4 MNPs was evaluated by using Rhodamine B (RhB) as a model compound of organic pollutants to be degraded. At pH 5.4 and temperature 40 °C, the sonochemically synthesized Fe3O4 MNPs were observed to be able to activate H2O2 and remove ca. 90% of RhB (0.02 mmol L?1) in 60 min with a apparent rate constant of 0.034 min?1 for the RhB degradation, being 12.6 folds of that (0.0027 min?1) over the Fe3O4 MNPs prepared via a conventional reverse co-precipitation method. The mechanisms of the peroxidase-like catalysis with Fe3O4 MNPs were discussed to develop more efficient novel catalysts.  相似文献   

4.
A facile solvothermal method is developed for synthesizing layered Co–Ni hydroxide hierarchical structures by using hexamethylenetetramine (HMT) as alkaline reagent. The electrochemical measurements reveal that the specific capacitances of layered bimetallic (Co–Ni) hydroxides are generally superior to those of layered monometallic (Co, Ni) hydroxides. The as-prepared Co0.5Ni0.5 hydroxide hierarchical structures possesses the highest specific capacitance of 1767 F g−1 at a galvanic current density of 1 A g−1 and an outstanding specific capacitance retention of 87% after 1000 cycles. In comparison with the dispersed nanosheets of Co–Ni hydroxide, layered hydroxide hierarchical structures show much superior electrochemical performance. This study provides a promising method to construct hierarchical structures with controllable transition-metal compositions for enhancing the electrochemical performance in hybrid supercapacitors.  相似文献   

5.
《Current Applied Physics》2010,10(6):1422-1426
Mesoporous Co3O4 microspheres with unique crater-like morphology were obtained by utilizing the mesoporous silica material MCM-41 as a template. The analysis results of N2 adsorption–desorption measurement indicate that the product has a large Brunauer–Emmett–Teller (BET) surface area of 60 m2 g−1 and a narrow pore size distribution centering around 3.7 nm. Its electrochemical properties were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The findings reveal that this novel morphology material has a smaller inner resistance of about 0.4 Ω and a higher onset frequency of 550 Hz. This material can provide a high specific capacitance of 102 F g−1 and a large capacity retention of 74% in 500 continuous cycles test at a sweep rate of 3 mV s−1. More significantly, the mass loading of electroactive species can reach as large as 2 mg cm−2, which is one order of magnitude larger than common amount used.  相似文献   

6.
《Solid State Ionics》2006,177(9-10):833-842
The phase stability, oxygen stoichiometry and expansion properties of SrCo0.8Fe0.2O3−δ (SCF) were determined by in situ neutron diffraction between 873 and 1173 K and oxygen partial pressures of 5 × 10 4 to 1 atm. At a pO2 of 1 atm, SCF adopts a cubic perovskite structure, space group Pmm, across the whole temperature range investigated. At a pO2 of 10 1 atm, a two-phase region exists below 922 K, where the cubic perovskite phase coexists with a vacancy ordered brownmillerite phase, Sr2Co1.6Fe0.4O5, space group Icmm. A pure brownmillerite phase is present at pO2 of 10 2 and 5 × 10 4 atm below 1020 K. Above 1020 K, the brownmillerite phase transforms to cubic perovskite through a two-phase region with no brownmillerite structure observed above 1064 K. Large distortion of the BO6 (B = Co, Fe) octahedra is present in the brownmillerite structure with apical bond lengths of 2.2974(4) Å and equatorial bond lengths of 1.9737(3) Å at 1021 K and a pO2 of 10 2 atm. SCF is highly oxygen deficient with a maximum oxygen stoichiometry, 3  δ, measured in this study of 2.58(2) at 873 K and a pO2 of 1 atm and a minimum of 2.33(2) at 1173 K and a pO2 of 5 × 10 4 atm. Significant differences in lattice volume and expansion behavior between the brownmillerite and cubic perovskite phases suggest potential difficulties in thermal cycling of SrCo0.8Fe0.2O3−δ membranes.  相似文献   

7.
We present the time-dependent synthesis of cobalt hydroxide carbonate nanorods by hydrothermal method with a systematic increase of different parameters such as specific surface area and specific capacitance as a function of different synthesis time. Morphological characterization of the cobalt hydroxide carbonate nanorods were carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that variation of the time of reaction plays a crucial role in the transformation of samples’ morphology. Cobalt hydroxide carbonate nanorods synthesized with 12 h reaction time, which is the reaction just before the materials transforms into cobalt oxide under the same synthesis conditions exhibited the highest specific capacitance of 466 F g−1 at a current density of 1 A g−1 in 6 M KOH electrolyte and also showed excellent stability with ∼99% capacitance retention after 2000 cycles at a current density of 10 A g−1. Based on the above results, the cobalt hydroxide carbonate nanorods show a considerable potential as electrodes materials for supercapacitor applications.  相似文献   

8.
Magnetite (Fe3O4 nanoparticles (NPs)) HKUST-1 metal organic framework (MOF) composite as a support was used for surface imprinting of gallic acid imprinted polymer (HKUST-1-MOF-Fe3O4-GA-MIP) using vinyltrimethoxysilane (VTMOS) as the cross-linker. Subsequently, HKUST-1-MOF-Fe3O4-NPs-GA-MIP characterized by FT-IR, XRD and FE-SEM analysis and applied for fast and selective and sensitive ultrasound assisted dispersive magnetic solid phase microextraction of gallic acid (GA) by UV–Vis (UA-DMSPME-UV-Vis) detection method. Plackett–Burman design (PBD) and central composite design (CCD) according to desirability function (DF) indicate the significant variables among the extraction factors vortex (mixing) time (min), sonication time (min), temperature (°C), eluent volume (L), pH and HKUST-1-MOF-Fe3O4-NPs-GA-MIP mass (mg) and their contribution on the response. Optimum conditions and values correspond to pH, HKUST-1-MOF-Fe3O4-NPs-GA-MIP mass, sonication time and the eluent volume were set as follow 3.0, 1.6 mg, 4.0 min and 180 μL, respectively. The average recovery (ER%) of GA was 98.13% with desirability of 0.997, while the present method has best operational performance like wide linear range 8–6000 ng mL−1 with a Limit of detection (LOD) of 1.377 ng mL−1, limit of quantification (LOQ) 4.591 ng mL−1 and precision (<3.50% RSD). The recovery of GA in urine, human plasma and water samples within the range of 92.3–100.6% that strongly support high applicability of present method for real samples analysis, which candidate this method as promise for further application.  相似文献   

9.
《Ultrasonics sonochemistry》2014,21(4):1358-1365
Ultrasonic-assisted heterogeneous Fenton reaction was used for degradation of nitrobenzene (NB) at neutral pH conditions. Nano-sized oxides of α-Fe2O3 and CuO were prepared, characterized and tested in degradation of NB (10 mg L−1) under sonication of 20 kHz at 25 °C. Complete degradation of NB was effected at pH 7 in presence of 10 mM H2O2 after 10 min of sonication in presence of α-Fe2O3 (1.0 g L−1), (k = 0.58 min−1) and after 25 min in case of CuO (k = 0.126 min−1). α-Fe2O3 showed also effective degradation under the conditions of 0.1 g L−1 oxide and 5.0 mM of H2O2, even though with a lower rate constant (0.346 min−1). Sonication plays a major role in enhancing the production of hydroxyl radicals in presence of solid oxides. Hydroxyl radicals-degradation pathway is suggested and adopted to explain the differences noted in rate constants recorded on using different oxides.  相似文献   

10.
The present study the ultrasound assisted adsorption of dyes in single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon (Fe3O4-MNPs-AC) was described following characterization and identification of this adsorbent by conventional techniques likes field emission scanning electron microscopy, transmission electron microscopy, particle-size distribution, X-ray diffraction and Fourier transform infrared spectroscopy. A central composite design in conjunction with a response surface methodology according to f-test and t-test for recognition and judgment about significant term led to construction of quadratic model which represent relation among responses and effective terms. This model has unique ability to predict adsorption data behavior over a large space around central and optimum point. Accordingly Optimum conditions for well and quantitative removal of present dyes was obtained best operation and conditions: initial SY, MB and EB dyes concentration of 15, 15 and 25 mg L−1, 4.0, 6.0 and 5.0 of pH, 360, 360 and 240 s sonication time and 0.04, 0.03 and 0.032 g of Fe3O4-MNPs-AC. Replication of similar experiment (N = 5) guide that average removal percentage of SY, MB and EB were found to be 96.63 ± 2.86%, 98.12 ± 1.67% and 99.65 ± 1.21% respectively. Good agreement and closeness of Predicted and experimental result and high adsorption capacity of dyes in short time strongly confirm high suitability of present method for waste water treatment, while easy separation of present nanoparticle and its good regeneration all support good applicability of Fe3O4-MNPs-AC for waste water treatment. The kinetic study can be represented by combination of pseudo second-order and intraparticle diffusion. The obtained maximum adsorption capacities correspond to Langmuir as best model for representation of experimental data correspond to dyes adsorption onto Fe3O4-MNPs-AC were 76.37, 78.76 and 102.00 mg g−1 for SY, MB and EB, respectively. In addition, the performance comparison of ultrasound-assisted, magnetic stirrer assisted and vortex assisted adsorption methods demonstrates that ultrasound is an effective and good choice for facilitation of adsorption process via. Compromise of simple and facile diffusion.  相似文献   

11.
Multiwalled carbon nanotubes (MWCNTs) and Vulcan carbon (VC) decorated with SnO2 nanoparticles were synthesized using a facile and versatile sonochemical procedure. The as-prepared nanocomposites were characterized by means of transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infra red spectroscopy. It was evidenced that SnO2 nanoparticles were uniformly distributed on both carbon surfaces, tightly decorating the MWCNTs and VC. The electrochemical performance of the nanocomposites was evaluated by cyclic voltammetry and galvanostatic charge/discharge cycling. The as-synthesized SnO2/MWCNTs nanocomposites show a higher capacity than the SnO2/VC nanocomposites. Concretely, the SnO2/MWCNTs electrodes exhibit a specific capacitance of 133.33 F g−1, whereas SnO2/VC electrodes exhibit a specific capacitance of 112.14 F g−1 measured at 0.5 mA cm−2 in 1 M Na2SO4.  相似文献   

12.
Multiwalled carbon nanotubes (MWCNTs) were magnetized with Fe3O4 nanoparticles (MWCNTs-Fe3O4-NPs) and subsequently coated by vinyl end groups (Vinyltrimethoxysilane). MWCNT-Fe3O4-NPs were used as support for a new morphine (MO) molecularly imprinted polymer (MWCNT-Fe3O4-NPs@MO-MIP) by surface imprinting polymerization method. The MWCNT-Fe3O4-NPs@MO-MIP was characterized by FTIR, VSM and SEM techniques and successfully used for determination of MO. Ultrasonic-assisted magnetic solid phase extraction followed by UV–vis spectrophotometer (UAMSPE-UV–vis) was investigated for MWCNT-Fe3O4-NPs@MO-MIP and compared with non-imprinted polymer (NIP) using batch method. Central composite design under response surface methodology was used for the evaluation of the effect of variables, individually, as well as their possible interaction effects on the adsorption process. The variables such as sonication time, MWCNT-Fe3O4-NPs@MO-MIP mass, initial concentration of MO and pH were investigated in this study. At optimum experimental conditions, UAMSPE-UV–vis method was exhibited a linear range of 0.8–8.7 mg L−1 of the MO concentration with a detection limit of 0.18 mg L−1. The relative standard deviation for the analyte was found to be lower than 2.32%. The MWCNT-Fe3O4-NPs@MO-MIP adsorption capacity was found to be 37.01 mg g−1. The enrichment and preconcentration factors were found to be 107.01 and 98.21, respectively. The developed method was finally applied successfully to the determination of MO in urine and wastewater samples with the recoveries ranged from 96.40 to 105.6%.  相似文献   

13.
《Solid State Ionics》2006,177(9-10):847-850
LiCr0.15Mn1.85O4 spinel has been successfully synthesized by glycine–nitrate method (GNM). The presence of pure spinel phase was confirmed by long term XRPD measurements and the Rietveld structural refinement. Lattice parameter was estimated to be 8.2338 Å. Average particle size of prepared powder material is below 500 nm. The BET surface area is 9.6 m2 g 1. As a cathode material for lithium batteries LiCr0.15Mn1.85O4 shows initial discharge capacity of 110 mA h g 1 and capacity retention of 83% after 50 cycles.  相似文献   

14.
《Solid State Ionics》2006,177(26-32):2269-2273
Iron-doped Pr2Ni0.8Cu0.2O4 was studied as a new mixed electronic and oxide-ionic conductor for use as an oxygen-permeating membrane. An X-ray diffraction analysis suggested that a single phase K2NiF4-type structure was obtained in the composition range from x = 0 to 0.05 in Pr2Ni0.8  xCu0.2FexO4. It is considered that the doped Fe is partially substituted at the Ni position in Pr2NiO4. The prepared Pr2NiO4-based oxide exhibited a dominant hole conduction in the PO2 range from 1 to 10 21 atm. The electrical conductivity of Pr2Ni0.8−xCu0.2FexO4 is as high as 102 S cm 1 in the temperature range of 873–1223 K and it gradually decreased with the increasing amount of Fe substituted for Ni. The oxygen permeation rate was significantly enhanced by the Fe doping and it was found that the highest oxygen permeation rate (60 μmol min 1 cm 2) from air to He was achieved for x = 0.05 in Pr2Ni0.8  xCu0.2FexO4. Since the chemical stability of the Pr2NiO4-based oxide is high, Pr2Ni0.75Cu0.2Fe0.05O4 can be used as the oxygen-separating membrane for the partial oxidation of CH4. It was observed that the oxygen permeation rate was significantly improved by changing from He to CH4 and the observed permeation rate reached a value of 225 μmol min 1 cm 2 at 1273 K for the CH4 partial oxidation.  相似文献   

15.
《Solid State Ionics》2006,177(33-34):2979-2985
Electrochemical redox supercapacitors have been fabricated using polymeric gel electrolytes polyvinylidene fluoride co-hexafluoropropylene (PVdF-HFP)–ethylene carbonate (EC)–propylene carbonate (PC)–MClO4: M = Li, Na, (C2H5)4N and electrochemically deposited polypyrrole as conducting polymer electrode. The performance of the capacitors have been characterized using a.c impedance spectroscopy, cyclic linear sweep voltammetry and galvanostatic charge–discharge techniques. The capacitors shows larger values of overall capacitance of about 14–25 mF cm 2 (equivalent to a single electrode specific capacitance of 78–137 F g 1 of polypyrrole), which corresponds to the energy density of 11–19 W h kg 1 and power density of 0.22–0.44 kW kg 1. The values of capacitance have been found to be almost stable up to 5000 cycles and even more. A comparison indicates that the capacitive behaviour and the capacitance values are not much affected with the size of cations of the salts incorporated in gel electrolytes, rather predominant role of anions is possible at the electrode–electrolyte interfaces. Furthermore the coulombic efficiencies of all the cells were found to be nearly 100% that is comparable to the liquid electrolytes based capacitors.  相似文献   

16.
This paper presents a feasible protocol for the preparation of a novel versatile nanocomposite possessing superparamagnetism via a layer-by-layer method. We combined (3-aminopropyl)triethoxysilane-coated magnetic Fe3O4 nanoparticles (APTES-MNPs) with β-cyclodextrin (β-CD). The following unusual features were integrated in a single nano-system: (a) the silane coating outside the magnetic Fe3O4 cores derived from the hydrolysis of APTES acted as a coupling agent and provided amino group (–NH2) for linking the CD molecule; (b) the outermost CD moieties can function as inclusion sites and specific containers for drugs and biomolecules; (c) the innermost magnetic cores were able to sense and respond to an externally applied magnetic field and their behaviors in vivo or in vitro can be artificially manipulated and navigated. The obtained nanocomposite turned out to be superparamagnetic with a relatively high saturation magnetization value of 69 emu g?1, which implies potentially promising applications in magnetic drug delivery technology and bioseparation.  相似文献   

17.
This study synthesized Fe3O4 nanoparticles of 30–40 nm by a sonochemical method, and these particles were uniformly dispersed on the reduced graphene oxide sheets (Fe3O4/RGO). The superparamagnetic property of Fe3O4/RGO was evidenced from a saturated magnetization of 30 emu/g tested by a sample-vibrating magnetometer. Based on the testing results, we proposed a mechanism of ultrasonic waves to explain the formation and dispersion of Fe3O4 nanoparticles on RGO. A biosensor was fabricated by modifying a glassy carbon electrode with the combination of Fe3O4/RGO and hemoglobin. The biosensor showed an excellent electrocatalytic reduction toward H2O2 at a wide, linear range from 4 × 10?6 to 1 × 10?3 M (R2 = 0.994) as examined by amperometry, and with a detection limit of 2 × 10?6 M. The high performance of H2O2 detection is attributed to the synergistic effect of the combination of Fe3O4 nanoparticles and RGO, promoting the electron transfer between the peroxide and electrode surface.  相似文献   

18.
In this study, ultrasound assisted dispersive solid-phase micro extraction combined with spectrophotometry (USA-DSPME-UV) method based on activated carbon modified with Fe2O3 nanoparticles (Fe2O3-NPs-AC) was developed for pre-concentration and determination of safranin O (SO). It is known that the efficiency of USA-DSPME-UV method may be affected by pH, amount of adsorbent, ultrasound time and eluent volume and the extent and magnitude of their contribution on response (in term of main and interaction part) was studied by using central composite design (CCD) and artificial neural network-genetic algorithms (ANN-GA). Accordingly by adjustment of experimental conditions suggested by ANN-GA at pH 6.5, 1.1 mg of adsorbent, 10 min ultrasound and 150 μL of eluent volume led to achievement of best operation performance like low LOD (6.3 ng mL−1) and LOQ (17.5 ng mL−1) in the range of 25–3500 ng mL−1. In following stage, the SO content in real water and wastewater samples with recoveries between 93.27–99.41% with RSD lower than 3% was successfully determined.  相似文献   

19.
《Current Applied Physics》2010,10(4):1071-1075
The physical and electrochemical properties of the activated carbon pellet electrodes have been investigated. Activated carbon pellets were prepared from single step carbonization process of pre-carbonized rubber wood sawdust at a temperature of 800 °C that followed with a CO2 activation process at temperature in the range of 700–1000 °C. The BET characterization on the sample found that the surface area of the carbon pellet increased with the increasing of the activation temperature. The optimum value was as high as 683.63 m2 g−1. The electrical conductivity was also found to increase linearly with the increasing of the activation temperature, namely from 0.0075 S cm−1 to 0.0687 S cm−1 for the activation temperature in the range of 700–1000 °C. The cyclic voltammetry characterization of the samples in aqueous solution of 1 M H2SO4 also found that the specific capacitance increased with the increasing of the activation temperature. Typical optimum value was shown by the sample activated at 900 °C with the specific capacitance was as high as 33.74 F g−1 (scan rate 1 mV s−1). The retained ratio was as high as 32.72%. The activated carbon pellet prepared from the rubber wood sawdust may found used in supercapacitor applications.  相似文献   

20.
《Current Applied Physics》2010,10(3):904-909
An electrosynthesis process of hydrophilic polyaniline nanofiber electrode for electrochemical supercapacitor is described. The TGA–DTA study showed polyaniline thermally stable up to 323 K. Polyaniline nanofibers exhibit amorphous nature as confirmed from XRD study. Smooth interconnected fibers having diameter between 120–125 nm and length typically ranges between 400–500 nm observed from SEM and TEM analysis. Contact angle measurement indicated hydrophilic nature of polyaniline fibers. Optical study revealed the presence of direct band gap with energy 2.52 eV. The Hall effect measurement showed room temperature resistivity ∼3 × 10−4 Ω cm and Hall mobility 549.35 cm−2V−1 s−1. The supercapacitive performance of nanofibrous polyaniline film tested in 1 M H2SO4 electrolyte and showed highest specific capacitance of 861 F g−1 at the voltage scan rate of 10 mV/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号