首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An atmospheric molding protocol has been used to prepare an ionic methacrylate-based copolymer sample support chips for MALDI (pMALDI)-MS by targeting selected groups of various monomers copolymerized during molding, namely, carboxy, sulfo, dimethylalkyamino, and trimethylalkylammonium groups. The new disposable array chips provide analyte-oriented enhancement of protein adsorption to the modified substrates without requiring complicated surface coating or derivatization. The MALDI-MS performance of the new ionic copolymer chips was evaluated for lysozyme, beta-lactoglobulin A, trypsinogen and carbonic anhydrase I using washing with solutions prepared in pH or ionic strength steps. On cationic chips, the proteins are washed out at pH lower than their p/ values, and on anionic chips at pH higher than their p/ values. The ability of the microfabricated pMALDI chip set to selectively adsorb different proteins from real samples and to significantly increase their MS-signal was documented for the transmembrane photosystem I protein complex from the green alga Chlamydomonas reinhardtii. The proteins were almost exclusively adsorbed according to calculated pI values and grand average of hydropathy (GRAVY) indexes. The new disposable chips reduce manipulation times and increase measurement sensitivity for real-world proteomic samples. The simple atmospheric molding procedure enables additional proteomic operations to be incorporated on disposable MALDI-MS integrated platforms.  相似文献   

2.
Chen J  Lin Y  Chen G 《Electrophoresis》2007,28(16):2897-2903
In this report, a method based on the redox-initiated polymerization of methyl methacrylate (MMA) has been developed for the rapid fabrication of poly(methyl methacrylate) (PMMA) microfluidic chips. MMA containing 2-2'-azo-bis-isobutyronitrile was allowed to prepolymerize in a water bath to form a viscous prepolymer solution that was subsequently mixed with MMA containing a redox-initiation couple of benzoyl peroxide/N,N-dimethylaniline. The dense molding solution was sandwiched between a silicon template and a piece of 1-mm-thick PMMA plate. The polymerization could complete within 50 min under ambient temperature. The images of raised microfluidic structures on the silicon template were precisely replicated into the synthesized PMMA substrate during the redox-initiated polymerization of the molding solution. The chips were subsequently assembled by the thermal bonding of the channel plates and the covers. The new fabrication approach obviates the need for special equipment and significantly simplifies the process of fabricating PMMA microdevices. The attractive performance of the novel PMMA microchips has been demonstrated in connection with contactless conductivity detection for the separation and detection of ionic species.  相似文献   

3.
The adsorption behaviors of bovine serum albumin (BSA) containing both dimeric and monomeric species onto polymer microspheres were examined using various homopolymers and poly(2-hydroxyethyl methacrylate)/polystyrene composite microspheres which were produced by the emulsifier-free (seeded) emulsion polymerization technique. The preferential adsorption of the BSA dimer was clearly observed in an optimum region of the surface hydrophilicities of the polymer microspheres. The preferential adsorption of the BSA dimer onto the composite polymer microspheres having heterogeneous surfaces consisting of hydrophilic and hydrophobic parts was more marked than those onto the homopolymer and copolymer microspheres having homogeneous surfaces.  相似文献   

4.
研究评价了本课题组合成的低温流动性改进剂蜡晶分散剂M分别与乙烯 -醋酸乙烯酯共聚物、聚甲基丙烯酸高级酯之间的协同效应。结果表明 :M组分与乙烯 -醋酸乙烯酯共聚物复配使用时表现出了良好的协同效应 ,M和乙烯 -醋酸乙烯酯聚合物以及聚甲基丙烯酸高级酯组成的三元复配体系的协同效应更强 ,M具有助降冷滤作用。研究结果还表明 ,协同作用取决于M组分的分子结构 ,其中烃基链的长短具有重要影响。  相似文献   

5.
Two new styrene-hydroxyethyl methacrylate copolymers containing immobilized porphyrinatomanganese(III) were prepared and characterized as microspheres by SEM, UV–Vis, FT-IR, and TG-DTG. Their catalytic activities have been investigated for the hydroxylation of cyclohexane in the presence of molecular oxygen under mild conditions. The copolymer microspheres proved to be more efficient catalysts than the corresponding non-supported porphyrinatomanganese(III) complex. The alkylated polymer microspheres with porphyrinatomanganese(III) had the highest catalytic activity, which may be attributable to the hydrophobic microenvironment around the porphyrinatomanganese(III) centers, resulting from the alkyl groups.  相似文献   

6.
The self-assembly induced by the photocontrolled/living radical polymerization mediated by 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl was performed for amphiphilic poly(methacrylic acid)-block-poly(alkyl methacrylate-random-methacrylic acid) containing ethyl, n-propyl, and n-butyl methacrylates in order to control the morphology based on the hydrophobic-hydrophilic balance. The morphology transformation from films to spherical vesicles via the transition was well-controlled by adjusting the ratio of the alkyl methacrylate unit to the methacrylic acid in the hydrophobic random copolymer block. The copolymers formed the respective morphologies at different ratios dependent on the alkyl chain length of the methacrylates; the ratio for the formation of the respective morphologies decreased as the alkyl chain length increased. The hydrophobic energy estimation of these copolymers demonstrated that the respective morphologies had definite hydrophobic energies independent of the alkyl chain length, indicating that the morphologies were determined only by the hydrophobic magnitude of the random copolymer block.  相似文献   

7.
Injection molded microfluidic chips featuring integrated interconnects   总被引:2,自引:0,他引:2  
An injection molding process for the fabrication of disposable plastic microfluidic chips with a cycle time of 2 min has been designed, developed, and implemented. Of the sixteen commercially available grades of cyclo-olefin copolymer (COC) that were screened for autofluorescence and transparency to ultraviolet (UV) light, Topas 8007 x 10 was identified as the most suitable for production. A robust solid metal mold insert defining the microfluidic channels was rapidly microfabricated using a process that significantly reduces the time required for electroplating. No wear of the insert was observed even after over 1000 cycles. The chips were bonded by thermal fusion using different bonding conditions. Each condition was tested and its suitability evaluated by burst pressure measurements. The COC microfluidic chips feature novel, integrated, reversible, standardized, ready-to-use interconnects that enable operation at pressures up to 15.6 MPa, the highest value reported to date. The suitability of these UV transparent, high pressure-resistant, disposable devices was demonstrated by in situ preparation of a high surface area porous polymer monolith within the channels.  相似文献   

8.
A novel approach for the fabrication of magneto‐active carbon nanotubes (CNTs) stabilized in aqueous media, involving the combination of carboxylated single‐wall carbon nanotubes (SWCNTs) with a new class of methacrylate‐based chelating diblock copolymers, is described. More precisely, a well‐defined diblock copolymer consisting of hexa(ethylene glycol) methyl ether methacrylate (hydrophilic and thermo‐responsive) and 2‐(acetoacetoxy)ethyl methacrylate (hydrophobic and metal‐chelating) synthesized by reversible addition‐fragmentation chain transfer polymerization has been used to prepare polymer‐coated magneto‐active SWCNTs decorated with iron oxide nanoparticles. Further to the characterization of the compositional and thermal properties using transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction spectroscopy and thermal gravimetric analysis, assessment of the magnetic characteristics by vibrational sample magnetometry disclosed superparamagnetic behavior at room temperature. The latter, combined with the thermo‐responsive properties of the polymeric coating and the unique, inherent properties of the carbon nanotubes may allow for their future exploitation in the biomedical field. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1389–1396, 2011  相似文献   

9.
采用饥饿法将2-甲基丙烯酰氧乙基磷酰胆碱(MPC)分别与甲基丙烯酸十八烷基酯(SMA)、 甲基丙烯酸十二烷基酯(LMA)及甲基丙烯酸正丁酯(BMA)聚合, 通过改变投料比例和沉淀剂种类, 合成了一系列含磷酰胆碱基团的仿细胞膜结构的两亲性二元随机共聚物. 1H NMR和元素分析结果表明, 合成的两亲性二元随机共聚物的组成与投料比相近. DSC结果表明, 聚合物具有较低的玻璃化转变温度. 表面张力及水的动态接触角(DCA)研究发现, 聚合物涂层表面具有明显的两亲性及表面结构易变性, 在空气中憎水基团在表面取向, 在水环境中亲水的磷酰胆碱基团则迁移取向到涂层表面形成仿细胞外层膜结构界面, 最终形成不溶于水的仿细胞膜结构涂层.  相似文献   

10.
Bi H  Meng S  Li Y  Guo K  Chen Y  Kong J  Yang P  Zhong W  Liu B 《Lab on a chip》2006,6(6):769-775
A protein-resistant surface has been constructed on the poly(methyl methacrylate) (PMMA) microfluidic chips based on a one-step modification. The copolymer of butyl methacrylate (BMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) is synthesized to introduce a dense PEG molecular brush-like coating on the PMMA microchannel surfaces via the anchoring effect of the hydrophobic BMA units. The PEGMA segments could produce hydrophilic domains formed on the interface so as to achieve stable electroosmotic flow, and less nonspecific adsorption toward biomolecules. The modification procedure and the properties of the poly(BMA-co-PEGMA)-coated surface have been characterized by FT-IR spectroscopy, confocal fluorescence microscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. The water contact angle and electroosmotic flow of PEG-modified PMMA microchip are measured to be 36 degrees and 5.4 x 10(-4) cm(2) V(-1) s(-1), while those of 73 degrees and 1.9 x 10(-4) cm(2) V(-1) s(-1) for native one, respectively. The PEG-modified microchip has been applied for the electrophoresis separation of proteins, corresponding to the theoretical efficiencies about 16 300 and 412 300 plates m(-1). In the interest of achieving efficient separation while minimizing biofoulings from the serum and plasma, the fabrication of PEG-coated microfluidic chips would provide a biocompatible platform for complex biological analysis.  相似文献   

11.
Novel methods for immobilizing proteins on surfaces have the potential to impact basic biological research as well as various biochip applications. Here, we demonstrate a unique method to pattern proteins with a nanometer periodicity on silicon oxide substrates using microphase-separated diblock copolymer thin films. We developed a straightforward and effective protein immobilization technique using the microphase-separated domains of polystyrene-block-poly(methyl methacrylate) to localize various model protein molecules such as bovine immunoglobulin G, fluorescein isothiocyanate conjugated anti-bovine immunoglobulin G, and protein G. The self-organizing nature of the diblock copolymer was exploited to produce periodically alternating, nanometer-spaced polymeric domains exposing the two chemical compositions of the diblock to surface. We demonstrate that the model proteins selectively self-organize themselves on the microdomain regions of specific polymer components due to their preferential interactions with one of the two polymer segments. This diblock copolymer-based, self-assembly approach represents a step forward for facile, nanometer-spaced protein immobilization with high areal density and could provide a pathway to high-throughput proteomic arrays and biosensors.  相似文献   

12.
We present a high-throughput roll-to-roll (R2R) manufacturing process for foil-based polymethyl methacrylate (PMMA) chips of excellent optical quality. These disposable, R2R hot embossed microfluidic chips are used for the identification of the antibiotic resistance gene mecA in Staphylococcus epidermidis. R2R hot embossing is an emerging manufacturing technology for polymer microfluidic devices. It is based on continuous feeding of a thermoplastic foil through a pressurized area between a heated embossing cylinder and a blank counter cylinder. Although mass fabrication of foil-based microfluidic chips and their use for biological applications were foreseen already some years ago, no such studies have been published previously.  相似文献   

13.
L Li  X Bi  J Yu  CL Ren  Z Liu 《Electrophoresis》2012,33(16):2591-2597
Manufacturing materials are an essential element for the fabrication of microfluidic chips. PDMS, the most widely used polymeric material, is associated with apparent disadvantages such as hydrophobic nature, while other materials also suffer from some limitations. In this paper, a new soft lithographic route was proposed for the facile manufacturing of hydrophilic sandwich microchips, using bisphenol A based epoxy acrylate (BABEA) as a new patterning material. The BABEA copolymers are hydrophilic, highly transparent in visible range while highly untransparent when the wavelength is less than 290 nm, and of high replication fidelity. By combining with appropriate monomers, including glycidyl methacrylate, methylmethacrylate, and acrylic acid, the copolymers contain active functional groups, which allows for easy postmodification for desirable functional units. A fabrication procedure was proposed for manufacturing hybrid quartz/BABEA copolymer/quartz microchips. In the procedure, no micromachining equipments, wet etching, or imprinting techniques were involved, making the fabrication approach applicable in ordinary chemistry laboratories. The performance of the prepared microchips was demonstrated in terms of CIEF with UV-whole channel imaging detection. The hydrophilic microchannel ensures stable focusing while the polymeric middle layer acts as a perfectly aligned optical slit for whole channel UV absorbance detection.  相似文献   

14.
Here we describe a capillary electrophoretic method for the separation of double-stranded oligonucleotides (ds-ODNs) ranging from 16-20 bp with 2 bp resolution using a low concentration of poly(ethylpyrrolidine methacrylate-co-methyl methacrylate) (PEPyM-co-PMMA) copolymer physically adsorbed to a capillary surface. Contrary to traditional DNA separations, we show that the ds-ODN with the highest molecular size eluted first and propose that this phenomena is due to a screening effect by the PEPyM-co-PMMA coating on the smaller ds-ODNs negative charge during elution. Key to the performance of this separation was a sample preparation time of less than 1 h and analysis time of 40 min. Repeatability of intraday migration time for the mixtures was typically < 1% relative standard deviation (n = 3). In addition, we demonstrate that the coating has an acceptable capillary lifetime of over 70 injections.  相似文献   

15.
Four different polymer model networks of identical molecular architecture based on cross-linked stars (CLSs) were investigated by small-angle neutron scattering (SANS). One of the model networks was a hydrophilic homopolymer CLS of 2-(dimethylamino)ethyl methacrylate (DMAEMA), and the other three were amphiphilic copolymer CLS co-networks of DMAEMA and hydrophobic methyl methacrylate (MMA): one based on a star with random copolymer arms and the other two based on heteroarm star copolymers. For the homopolymer and random copolymer star networks, the scattering curves show shoulders at low values of the scattering vector, indicating very small compacted domains with radii of 1.0-1.3 nm, with the random copolymer star co-network having somewhat larger domains. For the heteroarm star co-networks, pronounced peak maxima are observed because of a much higher degree of microphase structuring than for the other two co-networks. The scattering patterns are described by the presence of well-defined hydrophobic domains with radii of 7.1 and 10.3 nm in the two heteroarm star co-networks, respectively, thereby proving pronounced microphase separation in these systems.  相似文献   

16.
Copolymerization of binary mixtures of alkyl (meth)acrylates has been initiated in toluene by a mixed complex of lithium silanolate  (s-BuMe2SiOLi) and s-BuLi (molar ratio > 21) formed in situ by reaction of s-BuLi with hexamethylcyclotrisiloxane (D3). Fully acrylate and methacrylate copolymers, i.e., poly(methyl acrylate-co-n-butyl acrylate), poly(methyl methacrylate-co-ethyl methacrylate), poly(methyl methacrylate-co-n-butyl methacrylate), poly(methyl methacrylate-co-n-butyl methacrylate), poly(isobornyl methacrylate-co-n-butyl methacrylate), poly(isobornyl methacrylate-co-n-butyl methacrylate) of a rather narrow molecular weight distribution have been synthesized. However, copolymerization of alkyl acrylate and methyl methacrylate pairs has completely failed, leading to the selective formation of homopoly(acrylate). As result of the isotactic stereoregulation of the alkyl methacrylate polymerization by the s-BuLi/s-BuMe2SiOLi initiator, highly isotactic random and block copolymers of (alkyl) methacrylates have been prepared and their thermal behavior analyzed. The structure of isotactic poly(ethyl methacrylate-co-methyl methacrylate) copolymers has been analyzed in more detail by Nuclear Magnetic Resonance (NMR). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2525–2535, 1999  相似文献   

17.
A simple process for realizing stable and reliable electrospray ionization (ESI) tips in polymer microfluidic systems is described. The process is based on the addition of a thin hydrophobic membrane at the microchannel exit to constrain lateral dispersion of the Taylor cone formed during ESI. Using this approach, ESI chips are shown to exhibit well-defined Taylor cones at flow rates as low as 80 nL min(-1) through optical imaging. Furthermore, stable electrospray current has been measured for flow rates as low as 10 nL min(-1) over several hours of continuous operation. Characterization of the electrospray process by optical and electrical monitoring of fabricated ESI chips is reported, together with mass spectrometry validation using myoglobin as a model protein. The novel process offers the potential for low-cost, direct interfacing of disposable polymer microfluidic separation platforms to mass spectrometry.  相似文献   

18.
A combination of gel permeation chromatography (GPC), thin-layer chromatography (TLC) and pyrolysis gas chromatography (PGC) has been used for investigations of a polymethyl methacrylate-polystyrene-polymethyl methacrylate block copolymer. Continuous distribution of the polymer (40-mg sample) was attained according to the content of the styrene and methyl methacrylate units and of the block copolymer and according to the composition of the copolymer as functions of the hydrodynamic radius of the macromolecules. The polymer was subjected to a preliminary fractionation with an analytical gel chromatograph. The fractions were investigated by TLC, which permitted the separation of the block copolymer and the homopolymers. The composition of the fractions obtained by GPC and TLC was determined by PGC. As a result, it was possible to establish the composition of the block copolymer and its ratio to polymethyl methacrylate in each fraction. This investigation was based on a combination of highly effective fractionation by chromatographic methods with precise quantitative ratios obtained from Benoit's universal calibration graph and from determinations of the composition of the polymer fractions by PGC. The mechanism of the TLC of polymers, including the appearance of artefacts that distort the results of analysis, is also discussed.  相似文献   

19.
The properties of amphiphilic block copolymer membranes can be tailored within a wide range of physical parameters. This makes them promising candidates for the development of new (bio)sensors based on solid-supported biomimetic membranes. Here we investigated the interfacial adsorption of polyelectrolyte vesicles on three different model substrates to find the optimum conditions for formation of planar membranes. The polymer vesicles were made from amphiphilic ABA triblock copolymers with short, positively charged poly(2,2-dimethylaminoethyl methacrylate) (PDMAEMA) end blocks and a hydrophobic poly( n-butyl methacrylate) (PBMA) middle block. We observed reorganization of the amphiphilic copolymer chains from vesicular structures into a 1.5+/-0.04 nm thick layer on the hydrophobic HOPG surface. However, this film starts disrupting and dewetting upon drying. In contrast, adsorption of the vesicles on the negatively charged SiO2 and mica substrates induced vesicle fusion and formation of planar, supported block copolymer films. This process seems to be controlled by the surface charge density of the substrate and concentration of the block copolymers in solution. The thickness of the copolymer membrane on mica was comparable to the thickness of phospholipid bilayers.  相似文献   

20.
ABSTRACT

The breath-figure method using the condensation of water droplets can easily fabricate regular porous films. Although the method is simple, the phenomenon itself requires the control of many parameters that change throughout the process. Therefore, we require a unified understanding of polymers for the fabrication of ordered porous films. In this study, to clarify the required molecular structures of polymers to form a regular porous structure, we systematically explored poly(methacrylate)s with cyanobiphenyl moieties connected by dodecyl groups in the side chain (P11CB); these could form a hexagonal ordered porous structure on the entire film surface. The comparison of P11CB and P11B, which is a P11CB without cyano groups, showed that the local polar groups in hydrophobic polymers promote the formation of ordered porous films. Furthermore, no holes were formed in films of P0CB which is a P11CB without alkyl spacers due to its hydrophilicity. Long alkyl chains resulted in changed hydrophilic polymers to hydrophobic polymers. The introduction of long alkyl chains as a spacer between the biphenyl moiety and polymer backbone is preferred in the cases of particularly few amounts of biphenyl groups in the polymer. The biphenyl groups showed the ability to improve film formability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号