首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
Eight 5,10,15,20-tetrakis[3- or 4-(beta-D-glycopyranosyloxy)phenyl]chlorins were synthesized by means of the Whitlock method with diimide reduction and purified by reversed-phase thin layer chromatography (RP-TLC). All compounds were characterized by (1)H NMR spectroscopy, electron-spray ionization time-of-flight mass spectrometry (ESI-TOF MS), and UV-Vis spectroscopy. ESI-TOF MS could detect the 2H difference in molecular weight between a glycoconjugated chlorin and its corresponding porphyrin (i.e., 5,10,15,20-tetrakis[3- or 4-(beta-D-glycopyranosyloxy)phenyl]porphyrin). The cellular uptake of the eight chlorins was evaluated in HeLa cells. All glycoconjugated chlorins showed higher cellular uptake than tetraphenylporphyrin tetrasulfonic acid (TPPS), and 5,10,15,20-tetrakis[3-(beta-D-xylopyranosyloxy)phenyl]chlorin showed 50-fold higher uptake than TPPS. The photocytotoxicity of 5,10,15,20-tetrakis[3-(beta-D-glucopyranosyloxy)phenyl]chlorin, 5,10,15,20-tetrakis[3-(beta-D-xylopyranosyloxy)phenyl]chlorin and TPPS towards HeLa cells was examined at the concentration of 2x10(-7) M (mol/dm(3)). These photosensitizers had no cytotoxicity in the dark, but their photocytotoxicity decreased in the order of 5,10,15,20-tetrakis[3-(beta-D-glucopyranosyloxy)phenyl]chlorin>5,10,15,20-tetrakis[3-(beta-D-xylopyranosyloxy)phenyl]chlorin>TPPS. The results indicate that the photocytotoxicity is not related simply to cellular uptake.  相似文献   

2.
We fabricated a layer-by-layer (LbL) film composed of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and poly(allylamine) (PAA) and investigated its pH response by UV-visible spectrometry. When the (PAA/TPPS)5PAA film was immersed in a pH 1.5 solution, J-aggregate bands were observed at 484 and 691 nm. Above pH 3.0, the J-aggregates were completely dissociated and an H-aggregate band was observed at 405 nm. The interconversion between the J-aggregates and H-aggregates in the LbL film was repeatable and controllable by changing the pH of the solutions.  相似文献   

3.
Thirty-two glycoconjugated porphyrins were synthesized by a modification of Lindsey method in the presence of Zn(OAc)(2).2H(2)O as a template. The Zn(2+) ion template strategy improved the yield about three-fold in the case of meta-substituted tetraphenylporphyrins. In addition, free-base porphyrins were obtained almost quantitatively by demetalation with 4 M HCl. Sixteen deacetylated glycoconjugated porphyrins were tested as candidate photodynamic therapy (PDT) drugs using HeLa cells. Most of the deacetylated glycoconjugated porphyrins showed higher cellular uptake than tetraphenylporphyrin tetrasulfonic acid (TPPS), and 5,10,15,20-tetrakis[4-(beta-D-arabinopyranosyloxy)phenyl]porphyrin (p-5d) in particular showed 18.5-fold higher uptake than TPPS. The photocytotoxicity of 5,10,15,20-tetrakis[4-(beta-D-glucopyranosyloxy)phenyl]porphyrin (p-5a), p-5d and TPPS was examined with HeLa cells, using a light dose of 16 J/cm(2). These photosensitizers had no cytotoxicity in the dark, but their photocytotoxicity increased in the order of TPPS < p-5a < p-5d. These results suggest p-5d is a good candidate for a PDT drug.  相似文献   

4.
Yu Cao 《Tetrahedron letters》2009,50(30):4358-8473
Water-soluble sulfonated tetraarylporphyrins are studied in a wide variety of contexts including as analytical reagents and as possible agents in cancer photodynamic therapy as well as in antiviral and antidiabetic applications. Herein, we report the first synthesis of a pentasulfonated porphyrin bearing an internal cyclic sulfone ring. Treatment of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4) with fuming H2SO4 gave a structure consistent with initial sulfonation followed by dehydration to give a sulfone bridge between an ortho-position of one of the phenyl groups and a β-pyrrole position on the porphine ring (TPPS4Sc). The structure was established by electrospray mass spectrometry and 1H NMR. The Soret UV-visible absorption is red shifted by about 32 nm compared to that of TPPS4.  相似文献   

5.
Oxidative–reductive and antioxidant properties of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin, and 5,10,15,20-tetrakis(4-pentoxyphenyl)porphyrin in their reaction with the 2,2-diphenyl-1-picrylhydrazile free radical are studied. Two of the three abovelisted compounds, namely, 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin, were found to possess antioxidant activity, the former’s antioxidant activity being higher, while 5,10,15,20-tetrakis(4-pentoxyphenyl)porphyrin showed no antioxidant properties. A probable mechanism of antioxidant activity of the studied porphyrins involves hydrogen homolytic detachment from functional substituent in phenyl ring and the hydrogen radical interaction with 2,2-diphenyl-1-picrylhydrazile.  相似文献   

6.
AOT/water/decane microemulsions have been used to entrap the water-soluble 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4). Quasi-elastic light scattering technique has confirmed the confinement of the porphyrin and its various aggregates into the inner water pool. Various species have been detected as function of the size of the microemulsions, concentration of the porphyrin, pH, and aging of the solutions by using a combination of UV-vis absorption, steady fluorescence emission, fluorescence lifetime measurements, and time-resolved fluorescence anisotropy. Under neutral pH conditions, the porphyrin is present as the free base monomer (S414) in the inner water compartment, and it is free to rotate when the size of the droplet is large enough and the porphyrin concentration is low. On increasing the concentration and/or decreasing the microemulsion size, a H-dimer of the free base (S406) is prevalently formed. Aging both the S414 and S406 species leads to the formation of a new species (S424), which has been postulated as a H-type dimer of the diacid porphyrin. On decreasing the pH, the species S414 and S406 almost instantaneously convert into the diacid porphyrin, which is monomeric (S434). This latter is an intermediate in the eventual formation of J-aggregated TPPS4 (S490). A marked stability has been observed for the S424 species, which do not interconvert on changing the pH of the bulk aqueous phase.  相似文献   

7.
The interaction between the achiral sulfonated porphyrin 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin, H 2TPPS 4 (4-), and two chiral cationic surfactants has been studied by optical absorption, fluorescence, and circular dichroism (CD) spectroscopies. At surfactant concentrations above the critical micellar concentration (cmc) the porphyrin is included in the micellar aggregates, but it is CD silent. Below the cmc at a definite porphyrin/surfactant stoichiometry the formation of heteroaggregates with transfer of chirality to the porphyrin chromophore occurs. The preferred surfactant/porphyrin stoichiometry is 3:1, which suggests a structure driven by electrostatic and hydrophobic interactions between porphyrin and surfactant and dipolar and ionic interactions with the water solution. At surfactant concentrations above the cmc, depending on the protocol of preparation of the samples, the formation of the two kinds of aggregates can be observed, reversible for the simple surfactant micelles incorporating the porphyrin, but irreversible for the heteroaggregates.  相似文献   

8.
In the reaction with quinazoline and 5-phenyl-1,2,4-triazin-5(2H)-one, 5,10,15,20-tetra(4-methoxyphenyl)porphyrin exhibits nucleophilic properties. In quinazoline excess, C—C coupling occurs at the C=N bond of azines and position 3 of the aryl ring to form 5,10,15,20-tetrakis(3-heteryl-4-methoxyphenyl)porphyrins. Monoheteryl-substituted porphyrin was obtained by the reaction of equimolar amounts of 5,10,15,20-tetra(4-methoxyphenyl)porphyrin and 5-phenyl-1,2,4-triazin-5(2H)-one.  相似文献   

9.
The treatment of nano-ordered oriented films of layered double hydroxide (LDH) with dodecyl sulfate increased the interlayer distance from 0.4 to 1.96 nm, which allowed the intercalation of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS). The re-stacking of separated layers and the rebuilding of crystals oriented parallel to the surface of quartz slides was confirmed by X-ray diffraction and atomic force microscopy. The hybrid films contained homogeneously distributed porphyrin molecules with preserved photophysical properties such as fluorescence, triplet state formation, and energy transfer, thus forming singlet oxygen.  相似文献   

10.
Jensen MP  Riley DP 《Inorganic chemistry》2002,41(18):4788-4797
Peroxynitrite (ONOO(-)/ONOOH), a putative cytotoxin formed by combination of nitric oxide (NO.) and superoxide (HO(2)(.)) radicals, is decomposed catalytically by micromolar concentrations of water-soluble Fe(III) porphyrin complexes, including 5,10,15,20-tetrakis(2',4',6'-trimethyl-3,5-disulfonatophenyl)porphyrinatoferrate(7-), Fe(TMPS); 5,10,15,20-tetrakis(4'-sulfonatophenyl)porphyrinatoiron(3-), Fe(TPPS); and 5,10,15,20-tetrakis(N-methyl-4'-pyridyl) porphyrinatoiron(5+), Fe(TMPyP). Spectroscopic (UV-visible), kinetic (stopped-flow), and product (ion chromatography) studies reveal that the catalyzed reaction is a net isomerization of peroxynitrite to nitrate (NO(3)(-)). One-electron catalyst oxidation forms an oxoFe(IV) intermediate and nitrogen dioxide, and recombination of these species is proposed to regenerate peroxynitrite or to yield nitrate. Michaelis-Menten kinetics are maintained accordingly over an initial peroxynitrite concentration range of 40-610 microM at 5.0 microM catalyst concentrations, with K(m) in the range 370-620 microM and limiting turnover rates in the range of 200-600 s(-1). Control experiments indicate that nitrite is not a kinetically competent reductant toward the oxidized intermediates, thus ruling out a significant role for NO(2)(.) hydrolysis in catalyst turnover. However, ascorbic acid can intercept the catalytic intermediates, thus directing product distributions toward nitrite and accelerating catalysis to the oxidation limit. Additional mechanistic details are proposed on the basis of these and various other kinetic observations, specifically including rate effects of catalyst and peroxynitrite concentrations, solution pH, and isotopic composition.  相似文献   

11.
Raman and IR spectra of the free base p-sulfonatophenyl and phenyl meso-substituted porphyrins [5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4); 5,10,15-tris(4-sulfonatophenyl)-20-phenyl-porphyrin (TPPS3); 5,10-bis(4-sulfonatophenyl)-15,20-diphenylporphyrin (TPPS2A); 5,15-bis(4-sulfonatophenyl)-10,20-diphenylporphyrin (TPPS2O); and 5-(4-sulfonatophenyl)-10, 15,20-trisphenylporphyrin (TPPS1)] and their N-diprotonated derivatives (porphyrin diacids) were studied. The Raman spectra of the deuterated analogues of these porphyrins, in which the central hydrogen atoms were substituted with deuterium, were also measured. The observed vibrational bands were assigned on the basis of the deuteration shifts and compared with the structural analogues of these compounds. In IR spectra of the free-base porphyrins, the p-sulfonation of phenyl groups results in evident alteration for the phenyl modes and the porphyrin skeleton modes that are strongly coupled with phenyl vibrations. While the p-sulfonation of phenyl groups causes only slight changes for the high-frequency Raman bands (> 850 cm(-1)), dramatic shifts and band splitting were observed in the low-frequency region (< 500 cm(-1)) of Raman spectra. The observed differences of low-frequency Raman spectra were attributed to the alteration of the structure of the porphyrin ring, especially the CalphaCmCalpha bond-angles, by different meso-sulfonatophenyl substitutions. In addition, different packing style of TPPSn molecules in the aggregates is also responsible for the alteration of the vibrational spectra of the aggregated TPPSn.  相似文献   

12.
In the presence of tryptophan (Trp), complex micelles were prepared by 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (TPPS) and poly(ethylene glycol)-block-poly(2-(dimethylamino)ethyl methylacrylate) (PEG-b-PDMAEMA) in aqueous solutions at pH 1.8. Different mixing sequences led to different morphologies. Spheres and nanorods of small size were obtained in sequence I (P/Trp+TPPS) where TPPS was added into the mixed solution of PEG-b-PDMAEMA and Trp. More nanorods of larger length were achieved in sequence II (TPPS/Trp+P) where the copolymer was added as the last component. Two types of supramolecular chirality of TPPS aggregates caused by mixing sequences were investigated. In (P/Trp+TPPS), the circular dichroism (CD) signal of H-band was in line with the chirality of Trp while that of J-band exhibited an opposite signal (Chirality I). In (TPPS/Trp+P), chiral signals at both H- and J-bands followed that of Trp (Chirality II). The conversion between the two types of chirality can be accomplished by modulating the molar ratio of the repeating units on block PDMAEMA to TPPS, or a cycle of pH 1.8-5.5-1.8 processing on the micelle solution. In addition, the supramolecular chirality can be memorized via strong electrostatic interaction with achiral copolymer even after removal of the chiral template, but only Chirality II can be cyclically "switched-off-on".  相似文献   

13.
The catalytic activity and stability of anionic cobalt(II) porphyrin complexes: 5,10,15,20-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrinatocobalt(II), 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5disulfonatophenyl)porphyrinatocobalt(II) and the cationic cobalt(II) porphyrin: 5,10,15,20-tetrakis[4-(diethylmethylammonio)phenyl]porphyrinatocobalt(II) tertraiodide have been investigated in the oxidation of 2-mercaptoethanol by dioxygen. All complexes were efficient catalysts for the auto-oxidation of 2-mercaptoethanol. The cationic cobalt(II) porphyrin has been found to be the most reactive catalyst. The rate of auto-oxidation of 2-mercaptoethanol catalysed by 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5disulfonatophenyl)porphyrinatocobalt(II) has been found to increase with increasing the pH from 7 to 9 then decreased at higher pH. The rate constants of auto-oxidation reaction showed linear dependence on catalyst concentration and saturation kinetics in both 2-mercaptoethanol concentrations and dioxygen pressure. Anionic cobalt(II) porphyrin complexes showed higher stability than the cationic catalyst in repeat oxidation reactions. Immobilizing the anionic catalysts on ion exchange resin and supporting the cationic catalyst on clay mineral montmorillonite improved their stabilities towards oxidation.  相似文献   

14.
It was found that a one-dimensional rodlike structure of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) in water acts as a powerful template for electrochemical polymerization of ethylenedioxathiophene (EDOT) and pyrrole on an ITO electrode. Examination using CV and UV-vis spectroscopic examinations established that J-aggregated TPPS molecules are entrapped in the resultant poly(EDOT) and poly(pyrrole) films. SEM observation established that these monomers are electrochemically oxidized to grow up to a nanosized rodlike structure, reflecting the aggregation structure of TPPS. [structure: see text]  相似文献   

15.
A series of cerium(IV) bisporphyrinate double-deckers [Ce(bbpp)2] (BBPP = 5,15-bis(4-butoxyphenyl) porphyrin dianion), [Ce(tmpp)2] (TMPP = 5,10,15,20-tetrakis(4-methoxyphenyl)-porphyrin dianion), [Ce(tfpp)2] (TFPP = 5,10,15,20-tetrakis(4-fluorophenyl)porphyrin dianion), [Ce(tmcpp)2] (TMCPP = 5,10,15,20-tetrakis(4-methoxycarbonylphenyl)porphyrin dianion), and [Ce(tmpp)(tmcpp)] was prepared. They bind three Ag+ ions to their concave porphyrin pi subunits (pi-clefts) according to a positive homotropic allosteric mechanism with Hill coefficients (nH) of 1.7-2.7. The rotation rates of the porphyrin ligands in [Ce(bbpp)2] were evaluated to be 200 s-1 at 20 degrees C (delta G++293 = 14.1 kcal mol-1) and 220 s-1 at -40 degrees C (delta G++233 = 11.0 kcal mol-1) without and with Ag+ ions, respectively. These results consistently support our unexpected finding that Ag+ binding can accelerate rotation of the porphyrin ligand. On the basis of UV-visible, 1H NMR, and resonance Raman spectral measurements, the rate enhancement of the rotational speed of the porphyrin ligands is attributed to conformational changes of the porphyrin in cerium(IV) bis-porphyrinate induced by binding of Ag+ guest ions in the clefts. This novel concept of positive homotropic allosterism is applicable to the molecular design of various supramolecular and switch-functionalized systems.  相似文献   

16.
[reaction: see text] The 2:1 inclusion complex between (2,3,6-tri-O-methyl)-beta-cyclodextrin (TMbetaCD) and 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin (TPPS(4)) behaves as a supramolecular sensitizer in water providing photooxygenation with turnover numbers up to 30,000 with a very minor sensitizer bleaching (<10%). The protocol, which employs only 4 equiv of the cyclodextrin additive with respect to the porphyrin sensitizer (5 x 10(-7) M), leads to high yield oxidation of model biomolecules such as l-methionine methyl ester and uracil and is also effective for phenol degradation in aqueous solution.  相似文献   

17.
J-aggregates of a diacid form (H4TPPS2-) of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4-) were stabilized by binding with ferric myoglobin (metMb) in aqueous solution at neutral pH. The J-aggregates gradually dissociated to monomeric H2TPPS(4-). The average half-lifetime (t1/2) of the J-aggregates in the presence of sufficient amounts of metMb was ca. 3 h in phosphate buffer at pH 7.0 and 25 degrees C. The stabilization of the J-aggregate by metMb is ascribed to encapsulation and fixation of an edge-to-edge structure of the J-aggregate by the relatively rigid protein molecules. The secondary structure of metMb was altered in some extent in the presence of an excess amount of the J-aggregates while no effect on denaturation of metMb was observed with the H2TPPS(4-) monomer or polyacrylate. The hydrophobic nature of the J-aggregate seems to play an important role for denaturation of metMb. The ability of denatured metMb to bind the azide anion was higher than that of natural metMb. The denaturation of metMb by the J-aggregates seems to induce surfacing of hemin leading to an entropy gain in coordination of the N3(-) anion to the iron(III) center.  相似文献   

18.
Synthesis of Glucoside Bonded Metal Porphyrins   总被引:1,自引:0,他引:1  
Enzyme catalyzed reaction often has high selectivity and efficiency under mild conditions. However, disadvantage of enzyme catalysts is the difficulty of recovery. Metalloporphyrin plays an important role in biological system such as redox reaction, electron transfer,oxygen transportation and charge separation etc.1,2 Metalloporphyrins as superoxide dismutase (SOD) mimics have showed the ability of catalyzing the redox reaction of some harmful radicals , such as O2·―, ·OH. Grove and co-…  相似文献   

19.
2,3,7,8,12,13,17,18-Octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin has been synthesized, and its acid-base and complexing properties in the systems 1,8-diazabicyclo[5.4.0]undec-7-ene-acetonitrile, acetonitrile-Zn(OAc)2, and 1,8-diazabicyclo[5.4.0]undec-7-ene-acetonitrile-Zn(OAc)2 have been studied by spectrophotometry. Titration of 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin with 1,8-diazabicyclo[5.4.0]undec-7-ene is accompanied by successive deprotonation of the pyrrole nitrogen atoms with formation of the corresponding mono- and dianion. The overall acid dissociation constant of the title compound has been determined. The complexation of neutral and doubly deprotonated 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin with Zn(OAc)2 has been studied, and kinetic parameters for the formation of the zinc complex according to the molecular and ionic mechanisms have been determined. Extra coordination of 1,8-diazabicyclo[5.4.0]undec-7-ene by the zinc complex of 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin.  相似文献   

20.
Absorption and fluorescence properties of aryl substituted porphyrins, 5,10,15,20-tetra-4-oxy(aceticacid)phenylporphyrin (TAPP), 5,10,15,20-tetra-(4-phenoxyphenyl) porphyrin (TPPP), 5,10,15,20-tetra-(3-bromo-4-hydroxyphenyl) porphyrin (TBHPP), and 5,10,15,20-tetra-p-chloromethylphenyl porphyrin (CMPP) were investigated. The UV/vis absorption, fluorescence and excited spectra as the fluorescence quantum yields and fluorescence lifetimes for the compounds were measured in organic solvents (chloroform (CHCl3), tetrahydrofuran (THF)) and immobilized media (PVC film, sol–gel matrix). The fluorescence quantum yields of TAPP and TPPP were higher than the others. The fluorescence lifetimes of all studied porphyrin derivates were found to be fifty percent lower and their fluorescence intensities were increased fifty percent more in both of immobilized mediums, as compared to organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号