首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of trans thiolate ligation on the coordinated nitric oxide in ferric heme nitrosyl complexes as a function of the thiolate donor strength, induced by variation of NH-S(thiolate) hydrogen bonds, is explored. Density functional theory (DFT) calculations (BP86/TZVP) are used to define the electronic structures of corresponding six-coordinate ferric [Fe(P)(SR)(NO)] complexes. In contrast to N-donor-coordinated ferric heme nitrosyls, an additional Fe-N(O) sigma interaction that is mediated by the dz2/dxz orbital of Fe and a sigma*-type orbital of NO is observed in the corresponding complexes with S-donor ligands. Experimentally, this is reflected by lower nu(N-O) and nu(Fe-N) stretching frequencies and a bent Fe-N-O moiety in the thiolate-bound case.  相似文献   

2.
Four members of the electron-transfer series [Fe(NO)(S(2)C(2)R(2))2]z (z = 1+, 0, 1-, 2-) have been isolated as solid materials (R = p-tolyl): [1a](BF4), [1a]0, [Co(Cp)2][1a], and [Co(Cp)2]2[1a]. In addition, complexes [2a]0 (R = 4,4-diphenyl), [3a]0 (R = p-methoxyphenyl), [Et(4)N][4a] (R = phenyl), and [PPh(4)][5a] (R = -CN) have been synthesized and the members of each of their electron-transfer series electrochemically generated in CH(2)Cl(2) solution. All species have been characterized electro- and magnetochemically. Their electronic, M?ssbauer, and electron paramagnetic resonance spectra as well as their infrared spectra have been recorded in order to elucidate the electronic structure of each member of the electron-transfer series. It is shown that the monocationic, neutral, and monoanionic species possess an {FeNO}6 (S = 0) moiety where the redox chemistry is sulfur ligand-based, (L)2-(L*)1-: [Fe(NO)(L*)2]+ (S = 0), [Fe(NO)(L*)(L)]0 <--> [Fe(NO)(L)(L*)]0 (S = 1/2), [Fe(NO)(L)2]- (S = 0). Further one-electron reduction generates a dianion with an {FeNO}7 (S = 1/2) unit and two fully reduced, diamagnetic dianions L2-: [Fe(NO)(L)2]2- (S = 1/2).  相似文献   

3.
Spontaneous formation of colored (1:1) complexes of various aromatic donors (ArH) with the nitrosonium acceptor (NO+) is accompanied by the appearance of two new (charge-transfer) absorption bands in the UV-vis spectrum. IR spectral and X-ray crystallographic analyses of the [ArH,NO+] complexes reveal their inner-sphere character by the ArH/NO+ separation that is substantially less than the van der Waals contact and by the significant enlargement of the aromatic chromophore. The reversible interchange between such an inner-sphere complex [ArH,NO+] and the redox product (ArH+.+ NO.) is quantitatively assessed for the first time to establish it as the critical intermediate in the overall electron-transfer process. Theoretical formulation of the NO+ binding to ArH is examined by LCAO-MO methodology sufficient to allow the unambiguous assignment of the pair of diagnostic (UV-vis) spectral bands. The MO treatment also provides quantitative insight into the high degree of charge-transfer extant in these inner-sphere complexes as a function of the HOMO-LUMO gap for the donor/acceptor pair. The relative stabilization of [ArH,NO+] is traced directly to the variation in the electronic coupling element H(AB), which is found to be substantially larger than the reorganization energy (lambda/2). In Sutin's development of Marcus-Hush theory, this inequality characterizes a completely delocalized Class III complex (which occupies a single potential well) according to the Robin-Day classification. The mechanistic relevance of such an unusual (precursor) complex to the inner-sphere mechanism for organic electron transfer is discussed.  相似文献   

4.
A novel class of water-soluble iron nitrosyl complexes has been developed for use as NO donor prodrugs. To elaborate these NO prodrugs various water-soluble ligands were used such as P(CH2OH)3, 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane (PTA), 1,2-bis[bis(hydroxymethyl)phosphino]ethane (HMPE), 1,2-bis[bis(hydroxymethyl)phosphino]benzene (TMBz), cysteamine, cysteamine hydrochloride, L-cysteine ethyl ester hydrochloride (LCEE) and pyrimidine-2-thiol (pyrim). The mononuclear complexes Fe(NO)2P(CH2OH)3Cl , Fe(NO)2(P(CH2OH)3)2, Fe(NO)2(PTA)2, Fe(NO)2HMPE , Fe(NO)2TMBz , [Fe(NO)2pyrimI] , [Fe(NO)3P(CH2OH)3][X] (X=PF6, SbF6, BF4) and the dinuclear species [Fe(NO)2S(CH2)2NH3Cl]2, [Fe(NO)2S(CH2)2NH3I2] , [Fe(NO)2LCEE]2 and [Fe(NO)2pyrim]2 were obtained. Complexes , , , , , , and are water-soluble. , and were identified as nitroxyl and , , , and as nitric oxide donors by applying an EPR NO-trap assay. To determine the amount of nitric oxide which was released from the nitric oxide donors, an additional electrochemical methodology was used. The equilibrium release or the trapping concentration of NO was also studied by a UV-vis method, which allowed the rate constant of NO release to be determined.  相似文献   

5.
The trans-[Fe(cyclam)(NO)Cl]Cl2 complex was synthesized by the reaction of cis-[Fe(cyclam)Cl2]Cl with NO gas. The X-ray structure of the complex showed that the [Fe–NO] moiety is linear, consistent with the NO+ character of the nitric oxide ligand. This suggestion was reinforced by the IR data, which showed the νNO at 1888 cm−1. The cyclic voltammogram of the trans-[Fe(cyclam)(NO)Cl]2+ complex presented three electrochemical processes at −0.70, 0.08 and 0.40 V versus Ag/AgCl. The first and last redox processes are centered at the NO ligand, whereas the second is characteristic of the generated aqua species, trans-[Fe(cyclam)Cl(H2O)]2+. Upon irradiation at 330 nm, pH 3.4, the title complex releases the NO moiety with the concomitant generation of the trans-[Fe(cyclam)(H2O)Cl]+ complex as suggested by electronic and IR spectroscopy as well as by cyclic voltammetry technique.  相似文献   

6.
The sensitivity to decomposition of the nitric oxide (NO) donor ion, 1-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (PROLI/NO), complicates direct electrophilic substitution to form useful prodrug derivatives. A modified general synthetic approach involving 1-[2-(hydroxymethyl)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate ion (structure A, above) was used to prepare several PROLI/NO prodrugs including the previously inaccessible O2-vinyl derivative, V-PROLI/NO. Metabolism of V-PROLI/NO by liver microsomes enriched in human cytochrome P450 isoforms was demonstrated.  相似文献   

7.
Transient 1:1 precursor complexes for intermolecular self-exchange between various organic electron donors (D) and their paramagnetic cation radicals (D+*), as well as between different electron acceptors (A) paired with their anion radicals (A-*), are spectrally (UV-NIR) observed and structurally (X-ray) identified as the cofacial (pi-stacked) associates [D, D+*] and [A-*, A], respectively. Mulliken-Hush (two-state) analysis of their diagnostic intervalence bands affords the electronic coupling elements (HDA), which together with the Marcus reorganization energies (lambda) from the NIR spectral data are confirmed by molecular-orbital computations. The HDA values are found to be a sensitive function of the bulky substituents surrounding the redox centers. As a result, the steric modulation of the donor/acceptor separation (rDA) leads to distinctive electron-transfer rates between sterically hindered donors/acceptors and their more open (unsubstituted) parents. The latter is discussed in the context of a continuous series of outer- and inner-sphere mechanisms for organic electron-transfer processes in a manner originally formulated by Taube and co-workers for inorganic (coordination) donor/acceptor dyads-with conciliatory attention paid to traditional organic versus inorganic concepts.  相似文献   

8.
The immobilization and properties of the nitric oxide donor trans-[Ru(NO)Cl(cyclam)](PF(6))(2), RuNO, entrapped in a silica matrix by the sol-gel process is reported herein. The entrapped nitrosyl complex was characterized by spectroscopic (UV-vis, infrared (IR), X-ray photoelectron, and (13)C and (29)Si MAS NMR) and electrochemical techniques. The entrapped species exhibit one characteristic absorption band in the UV-vis region of the electronic spectrum at 354 nm and one IR nu(NO) stretching band at 1865 cm(-1), as does the RuNO species in aqueous solution. Our results show that trans-[Ru(NO)Cl(cyclam)](PF(6))(2) can be entrapped in a SiO(2) matrix with preservation of the molecular structure. However, in a SiO(2)/SiNH(2) matrix, the complex undergoes a nucleophilic attack by the amine group at the nitrosonium. Irradiation of the complex, entrapped in the SiO(2) matrix, with light of 334 nm, resulted in NO release. The material was regenerated to its initial nitrosyl form by reaction with nitric oxide.  相似文献   

9.
A novel approach to designing nitric oxide (NO) storage and releasing microporous agents based on very stable, zeolite-type silicates possessing framework unsaturated transition-metal centers has been proposed. This idea has been illustrated with ETS-4 [Na(9)Si(12)Ti(5)O(38)(OH)·xH(2)O], a titanosilicate that displays excellent NO adsorption capacity and a slow releasing kinetics. The performance of these materials has been compared to the performance of titanosilicate ETS-10, [(Na,K)(2)Si(5)TiO(13)·xH(2)O], of benchmark zeolites mordenite and CaA, and of natural and pillared clays. DFT periodic calculations have shown that the presence of water in the pores of ETS-4 promotes the NO adsorption at the unsaturated (pentacoordinated) Ti(4+) framework ions.  相似文献   

10.
Lu TT  Chiou SJ  Chen CY  Liaw WF 《Inorganic chemistry》2006,45(21):8799-8806
Nitrosylation of the biomimetic reduced- and oxidized-form rubredoxin [Fe(SR)4]2-/1- (R = Ph, Et) in a 1:1 stoichiometry led to the formation of the extremely air- and light-sensitive mononitrosyl tris(thiolate) iron complexes (MNICs) [Fe(NO)(SR)3]- along with byproducts [SR]- or (RS)2. Transformation of [Fe(NO)(SR)3]- into dinitrosyl iron complexes (DNICs) [(RS)2Fe(NO)2]- and Roussin's red ester [Fe2(mu-SR)2(NO)4] occurs rapidly under addition of 1 equiv of NO(g) and [NO]+, respectively. Obviously, the mononitrosyl tris(thiolate) complex [Fe(NO)(SR)3]- acts as an intermediate when the biomimetic oxidized- and reduced-form rubredoxin [Fe(SR)4]2-/1- exposed to NO(g) were modified to form dinitrosyl iron complexes [(RS)2Fe(NO)2]-. Presumably, NO binding to the electron-deficient [Fe(III)(SR)4]- and [Fe(III)(NO)(SR)3]- complexes triggers reductive elimination of dialkyl/diphenyl disulfide, while binding of NO radical to the reduced-form [Fe(II)(SR)4]2- induces the thiolate-ligand elimination. Protonation of [Fe(NO)(SEt)3]- yielding [Fe(NO)(SPh)3]- by adding 3 equiv of thiophenol and transformation of [Fe(NO)(SPh)3]- to [Fe(NO)(SEt)3]- in the presence of 3 equiv of [SEt]-, respectively, demonstrated that complexes [Fe(NO)(SPh)3]- and [Fe(NO)(SEt)3]- are chemically interconvertible. Mononitrosyl tris(thiolate) iron complex [Fe(NO)(SPh)3]- and dinitrosyl iron complex [(EtS)2Fe(NO)2]- were isolated and characterized by X-ray diffraction. The mean NO bond distances of 1.181(7) A (or 1.191(7) A) in complex [(EtS)2Fe(NO)2]- are nearly at the upper end of the 1.178(3)-1.160(6) A for the anionic {Fe(NO)2}9 DNICs, while the mean FeN(O) distances of 1.674(6) A (or 1.679(6) A) exactly fall in the range of 1.695(3)-1.661(4) A for the anionic {Fe(NO)2}9 DNICs.  相似文献   

11.
There is currently considerable interest in the synthesis of new material with large second-order optical nonlinearities[1-2]. Ferrocenyl derivatives that we synthesized should offer the nonlinear optical properties because they possess (-donor acceptor interactions and non-centrosymmetry. In these compounds, ferrocenyl moiety is strong donor and pyridinium moiety can provide low-lying (* acceptor orbitals. Furthermore, these ferrocenyl compounds may also be used in preparation of self-assembled monolayers (SAMs)[3] due to their long alkyl chain that can be anchored on metal oxide by carboxylic group. The synthesis of ferrocenyl derivatives is shown in Scheme 1.  相似文献   

12.
We report a high yield, two-step synthesis of fac-[Ru(bpy)(CH3CN)3NO2]PF6 from the known complex [(p-cym)Ru(bpy)Cl]PF6 (p-cym = eta(6)-p-cymene). [(p-cym)Ru(bpy)NO2]PF6 is prepared by reacting [(p-cymene)Ru(bpy)Cl]PF6 with AgNO3/KNO2 or AgNO2. The 15NO2 analogue is prepared using K15NO2. Displacement of p-cymene from [(p-cym)Ru(bpy)NO2]PF6 by acetonitrile gives [Ru(bpy)(CH3CN)3NO2]PF6. The new complexes [(p-cym)Ru(bpy)NO2]PF6 and fac-[Ru(bpy)(CH3CN)3NO2]PF6 have been fully characterized by 1H and 15N NMR, IR, elemental analysis, and single-crystal structure determination. Reaction of [Ru(bpy)(CH3CN)3NO2]PF6 with the appropriate ligands gives the new complexes [Ru(bpy)(Tp)NO2] (Tp = HB(pz)3-, pz = 1-pyrazolyl), [Ru(bpy)(Tpm)NO2]PF6 (Tpm = HC(pz)3), and the previously prepared [Ru(bpy)(trpy)NO2]PF6 (trpy = 2,2',6',2' '-terpyridine). Reaction of the nitro complexes with HPF6 gives the new nitrosyl complexes [Ru(bpy)TpNO][PF6]2 and [Ru(bpy)(Tpm)NO][PF6]3. All complexes were prepared with 15N-labeled nitro or nitrosyl groups. The nitro and nitrosyl complexes were characterized by 1H and 15N NMR and IR spectroscopy, elemental analysis, cyclic voltammetry, and single-crystal structure determination for [Ru(bpy)TpNO][PF6]2. For the nitro complexes, a linear correlation is observed between the nitro 15N NMR chemical shift and 1/nu(asym), where nu(asym) is the asymmetric stretching frequency of the nitro group.  相似文献   

13.
The new complex trans-[NCRu(py)(4)(CN)Ru(py)(4)NO](PF(6))(3) (I) was synthesized. In acetonitrile solution, I shows an intense visible band (555 nm, epsilon = 5800 M(-1) cm(-1)) and other absorptions below 350 nm, associated with d(pi) --> pi(py) and pi(py) --> pi(py) transitions. The visible band is presently assigned as a donor-acceptor charge transfer (DACT) transition from the remote Ru(II) to the delocalized [Ru(II)-NO(+)] moiety. Photoinduced release of NO is observed upon irradiation at the DACT band. Application of the Hush model reveals strong electronic coupling, with H(DA) = approximately 2000 cm(-1). The difference between the optical absorption energy and redox potentials for the donor and acceptor sites (Ru(III,II), 1.40 V, and NO(+)/NO, 0.50 V, vs Ag/AgCl, 3 M KCl, respectively) (hnu - DeltaE(red)) is 1.33 eV, a large value which probably relates to the significant changes in distances and angles for the Ru-N-O moiety upon reduction. UV-vis absorptions, IR frequencies, and redox potentials are solvent-dependent. Controlled potential reduction (of NO(+)) and oxidation (of Ru(II) associated with the dicyano-chromophore) of I afford stable species, [NCRu(II)(py)(4)(CN)Ru(py)(4)NO](2+) (I(red)) and [NCRu(III)(py)(4)(CN)Ru(py)(4)NO](4+) (I(ox)), respectively, which are characterized by UV-vis and IR spectroscopies. I(red) shows an EPR spectrum characteristic of [Ru(II)-NO(*)] complexes. Compound I is electrophilically reactive in aqueous solution above pH 5: values of the equilibrium constant for the reaction [NCRu(py)(4)(CN)Ru(py)(4)NO](3+)+ 2 OH(-) <--> [NCRu(py)(4)(CN)Ru(py)(4)NO(2)](+) + H(2)O, K = 3.2 +/- 1.4 x 10(15) M(-2), and of the rate constant for the nucleophilic addition of OH(-), k = 9.2 +/- 0.2 x 10(3) M(-1) s(-1)(25 degrees C, I = 1 M), are obtained, with DeltaH = 90.7 +/- 3.8 kJ mol(-1) and DeltaS = 135 +/- 13 J K(-1) mol(-1). The oxidized complex, I(ox), shows an enhanced electrophilic reactivity toward OH(-). This addition reaction is followed by irreversible processes, which most probably lead to disproportionation of bound nitrite and other products.  相似文献   

14.
Carbon tetrabromide and bromoform are employed as prototypical electron acceptors to demonstrate the charge‐transfer nature of various intermolecular complexes with three different structural types of electron donors represented by (1) halide and pseudohalide anions, (2) aromatic (π‐bonding) hydrocarbons, and (3) aromatics with (n‐bonding) oxygen or nitrogen centers. UV–Vis spectroscopy identifies the electronic transition inherent to such [1:1] complexes; and their Mulliken correlation with the donor/acceptor strength verifies the relevant charge‐transfer character. X‐ray crystallography of CBr4/HCBr3 complexes with different types of donors establishes the principal structural features of halogen bonding. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:449–459, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20264  相似文献   

15.
A competitive indicator displacement assay has been successfully developed for the ratiometric determination of sulfhydryl-containing amino acids and peptides using heterobimetallic donor-acceptor complexes as chemodosimetric ensembles. Chromotropic cis-[ML2(CN)2](M = FeII, RuII, OsII; L = diimine) are used as signaling indicators and PtII(DMSO)Cl2 acceptor moiety is used as the receptor for the sulfhydryl-containing analytes. A series of three heterobimetallic donor-acceptor complexes: cis-FeII(bpy)2[CN-PtII(DMSO)Cl2]2 (1), cis-Ru(II)(bpy)2[CN-PtII(DMSO)Cl2]2 (2) and cis-Os(II)(bpy)2[CN-PtII(DMSO)Cl2]2 (3) are synthesized and characterized by X-ray crystallography. All the three ensembles are able to produce specific colorimetric/fluorimetric responses to sulfhydryl-containing amino acids (cysteine, homocysteine and methionine) as well as the sulfhydryl-containing small peptide glutathione. The mechanism of the competitive displacement assay is evaluated by examining the thermodynamics of formation of the donor-acceptor linkage and adducts between the acceptor metal and the sulfhydryl-containing analytes as well as by systematic variation of the donor and acceptor metals in the chemodosimetric ensembles.  相似文献   

16.
As it is now well-established that nitric oxide plays an important role in many physiological processes, there is a renewed interest in dinitrosyl-iron complexes (DNICs). The question concerning the electronic structure of DNICs circles around the formal oxidation states of the iron and nitric oxide of the Fe(NO)2 core. Previous infrared measurements of nu(NO) alone point out inconsistencies in assigning electron configurations and charges on metals, inherent from the measurement of one parameter external to the metal. This work represents the first experimental and theoretical attempt to assign vibrational modes for the {Fe(NO)2}9 core of DNICs. The following complexes are investigated, [PPN][S5Fe(NO)2] (1), [PPN][Se5Fe(NO)2] (2), [PPN][(SPh)2Fe(NO)2] (3), and [PPN][(SePh)2Fe(NO)2] (4). The analysis of isotopically edited Raman data together with normal coordinate calculation permitted assignment of nu(NO) and nu(Fe-NO) stretching and delta(Fe-N-O) bending modes in these complexes. The assignments proposed are the first ever reported for the DNICs; a comparison of nu(NO) and nu(Fe-NO) stretching frequencies in DNICs is now feasible. The Fe(NO)2 core electronic configuration in these complexes is described as {Fe1+(*NO)2}. Results from 1 and 3 have been complemented by density functional theory (DFT) frequency calculations. In addition to providing a reasonably correct account of the observed frequencies, DFT calculations also give a good account of the frequency shifts upon 15NO substitution providing the first link between DFT and Raman spectroscopies for DNICs. Through the use of a combination of NO intraligand and metal-ligand vibrational data for the Fe(NO)2 core, normal coordinate analysis gives a NO stretching force constant, which compared to molecular NO gas, is significantly reduced for all four complexes. The hybrid U-B3LYP/6-311++G(3d,2p) density functional method has been employed to analyze the molecular orbital compositions of predominantly NO orbitals based on the crystal structure of complex 1. The molecular orbital not only revealed the bonding nature of the {Fe(NO)2}9 core but also provided a qualitative correct account of the observed low NO vibrational frequencies. The calculation shows that the NO is involved in a strong donor bonding interaction with the Fe1+. This donor bonding interaction involves the 5sigma molecular orbital of the NO, which is sigma-bonding with respect to the intramolecular NO bond, and removal of electron density from this orbital destabilizes the NO bond. Though it is too ambiguous to extrapolate a nu(Fe-NO)/nu(NO) correlation line for {Fe(NO)2}9 DNICs based only on the data reported here, the feasibility of using a vibrational systematics diagram to extract the electron configurations and charges on metals is demonstrated based on the vibrational data available in the literature for iron-nitrosyl complexes. The data provided here can be used as a model for the determination of effective charges on iron and the bonding of nitric oxides to metals in DNICs.  相似文献   

17.
Conditions to prepare trans-[Ru2(dmba)4(C[triple chemical bond]CAr)2] from [Ru2(dmba)4(NO(3))2] (DMBA=N,N'-dimethylbenzamidinate) and HC[triple chemical bond]CAr were optimized; Et2NH was found to be the most effective among a number of weak bases in facilitating the product formation. Furthermore, a series of unsymmetric trans-[(ArC[triple chemical bond]C)Ru(2)(dmba)4(C[triple chemical bond]CAr')] compounds were prepared under optimized conditions, in which one or both of Ar and Ar' are donor (NMe2)-/acceptor (NO(2))-substituted phenyls. While the X-ray crystallographic studies revealed a minimal structural effect upon donor/acceptor substitution, voltammetric measurements indicated a significant influence of substituents on the energy level of frontier orbitals. In particular, placing a donor and an acceptor on the opposite ends of trans-[(ArC[triple chemical bond]C)Ru2(dmba)4(C[triple chemical bond]CAr')] moiety results in an energetic alignment of frontier orbitals that favors a directional electron flow, a necessary condition for unimolecular rectification.  相似文献   

18.
Calix[4]arene‐based molecules hold great promise as candidate sensors and storage materials for nitric oxide (NO), owing to their unprecedented binding affinity for NO. However, the structure of calix[4]arene is complicated by the availability of four possible conformers: 1,3‐alternate, 1,2‐alternate, cone, and partial cone (paco). Whilst complexes of NO with several of these conformers have previously been established, the 1,2‐alternate conformer complex, that is, [1,2‐alter ? NO]+, has not been previously reported. Herein, we determine the crystal structure of the NO complex with the 1,2‐alternate conformer for the first time. In addition, we have also found that the 1,2‐alternate and 1,3‐alternate conformers can combine with two NO molecules to form stable bis(nitric oxide) complexes. These new complexes, which exhibit remarkable binding capacity for the construction of NO‐storage molecules, were characterized by using X‐ray crystallography and NMR, IR, and UV/Vis spectroscopy. These findings will extend our understanding of the interactions between nitric oxide and cofacially and non‐cofacially arrayed aromatic rings, and we expect them to aid in the design and development of new supramolecular sensors and storage materials for NO with high capacity and efficacy.  相似文献   

19.
An approach toward visual detection and chemical utilization of NO(2)/N(2)O(4) is proposed, which employs simple calix[4]arenes. Exposure of tetra-O-alkylated calix[4]arenes 1 and 2, possessing either a cone or a 1,3-alternate conformation, to NO(2)/N(2)O(4), both in chloroform solution and in the solid state, results in deeply colored calixarene-nitrosonium (NO(+)) complexes. In the presence of a Lewis acid, such as SnCl(4), stable calixarene-NO(+) complexes 7 and 8 were isolated in a quantitative yield and characterized by UV-vis, FTIR, high-resolution (1)H NMR spectroscopy and elemental analysis. NO(+) is found encapsulated within the calixarene cavity, and stable charge-transfer complexes result with K(ass) > 10(6) M(-1) (CDCl(3)). The NO(+) encapsulation was also demonstrated in titration experiments with calixarenes 1, 2, and 5 and commercially available NO(+)SbF(6)(-) salt in chloroform. The complexation process is reversible, and the complexes dissociate upon addition of water and alcohol, recovering the parent calixarenes. Attachment of functionalized calix[4]arenes to silica gel was demonstrated, which afforded a solid material 15 capable of visual detection and entrapment of NO(2)/N(2)O(4). Calixarene-NO(+) complexes can be utilized for the NO(+) transfer processes and nitrosation reactions. The NO(+) guest transfer between two calixarene containers 2 and 5 was achieved and studied by UV-vis and (1)H NMR spectroscopy. Chemical fixation of NO(2)/N(2)O(4) was demonstrated through their quantitative transformation into the calixarene-NO(+) complex and its use as a nitrosonium transfer agent in the synthesis of N-nitrosoamides. These results may lead toward novel nitrogen oxides storing materials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号