首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A material based on lanthanum orthophosphate LaPO4 with inclusion of particles of lanthanum metaphosphate LaP3O9 was synthesized. The influence of the process parameters of the synthesis on the structure and properties of the material was determined. Heat treatment of the coprecipitated lanthanum phosphates at 700°C leads to the formation of a nanopowder with the LaPO4crystallite size of approximately 17 nm. Heat treatment of the nanopowder at temperatures from 1100 to 1500°C yields compact materials based on the LaPO4–LaP3O9 system. The heat treatment of the nanopowder at 1100°C leads to a sharp decrease in the porosity of the material (to ~5%) at insignificant grain growth (200–400 nm); under these conditions, the thermal conductivity [λ(25°C) = 3.2 W m–1 K–1], microhardness [Hv(25°C) = 4.6 ± 0.4 GPa], Young’s modulus [E(25°C) = 132 ± 9 GPa], and cracking resistance [K1c(25°C) = 1.6 ± 0.1 MPa m1/2] pass through maxima. The thermal expansion coefficient of the material depends on the heat treatment conditions only slightly and amounts to (8.2 ± 0.2) × 10–6 K–1.  相似文献   

2.
Two methylphenylsiloxane monomers with crosslinkable benzocyclobutene functionalities at the terminal positions, 1,1,5,5‐dimethyldiphenyl‐1,1,5,5‐di[2′‐(4′‐benzocyclobutenyl)vinyl]‐3,3‐diphenyltrisiloxane (BCB‐1) and 1,1,3,3‐dimethyl‐diphenyl‐1,1,3,3‐di[2′‐(4′‐benzocyclobutenyl)vinyl]disiloxane (BCB‐2) were prepared and characterized. By heating the solution of BCB‐1 and BCB‐2 in mesitylene, two partially polymerized resins of BCB‐1B and BCB‐2B with high molecular weight were also achieved. The monomers and their oligomers fully cured at temperatures above 250 °C. Cured BCB‐1 and BCB‐2 exhibited high Tg (257 and 383 °C) and good thermal stability (T5% > 472 °C both in N2 and in air). They also demonstrated low dielectric constants (2.69 and 2.66), low dissipation factors (2.36 and 2.23), and low water absorptions (0.20% and 0.17%). Moreover, a negative photosensitive formulation derived from BCB‐1B in combination with 2,6‐bis(4‐azidobenzylidene)‐4‐methylcyclohexanone (BAC‐M) as a photosensitive agent has been developed. The photosensitive composition, BCB‐1B containing 5 wt % BAC‐M, showed a sensitivity of 550 mJ/cm2 and a contrast of 1.96 when it was exposed to a 365 nm light (i‐line) and developed with cyclohexanone at 25 °C. A fine negative image of 10 μm line‐and‐space pattern was also printed in a film which was exposed to 700 mJ/cm2 of i‐line by contact‐printing mode. The negative image can be maintained without any pattern deformation in the curing process. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6246–6258, 2009  相似文献   

3.
In many medical and industrial applications, some strategies are needed to control the adhesion forces between the materials, because surface forces can activate or hinder the function of the device. All actual surfaces present some levels of roughness and the contact between two surfaces is transferred by the asperities on the surfaces. The force of the adhesion, which depends on the operating situations, can be influenced by the contact region. The aim of the present study is to predict the adhesion force in MEMS surfaces using the JKR and DMT models. The surfaces of the coating material in this research consisted of the single-layer coating of Gold and Silver, and the double-layer coating of TiO2/Gold and TiO2/Silver on the silicon (100) substrates. The depositing was done by the thermal evaporation method. The results showed that the double-layer coating developed by the new deposition method helped the reduction of the adhesion forces between the probe tip and the specimen surface. The predicted adhesion forces between the probe and the specimens with DMT and JKR models were compared with the experimental results. For all specimens, the simulated data by applying the JKR theory were in a good agreement with the adhesion force experimental values.  相似文献   

4.
Adhesion force is one of the most important factors in microelectromechanical systems (MEMS), especially for microassembly. It depends on operating conditions and is affected by the contact area. In this study, the adhesion force between MEMS materials and AFM tips was analysed using AFM's point-mode spectroscopy. The aim was to study the effectiveness of various coatings in MEMS adhesion surfaces. For this purpose, five silicon surfaces were used, four of which were coated, and one was noncoated. Two of them were deposited by single-layer coating (Au and Ag). The other two were deposited by double-layer coating (TiO2/Au, TiO2/Ag) on a Si (1 0 0) substrate. The depositing was accomplished by the thermal evaporation method. Composite materials and analysis were reviewed by observing the SEM image. The experimental results showed that the method of deposition helped to decrease the adhesion force between the probe tip and the surface of the specimens, and double-layer coating had stronger effect on decreasing the adhesion force than the single-layer coating.  相似文献   

5.
Acidity constant values of benzoic acid (BA)-modified platinum electrode (Pt-BA) and p-aminobenzoic acid (pABA)-modified platinum electrode (Pt-NHBA) surfaces were determined using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and contact angle measurements (CAM). Diazonium tetrafluoroborate salt reduction and pABA oxidation reactions were used to prepare (Pt-BA) and (Pt-NHBA) surfaces, respectively. Both surfaces exhibited pH dependence with [Fe(CN)6]3?/4? redox probe solutions at different pH; this allowed us to estimate the surface pK a values. Acidity constants for Pt-BA surface were found to be pK a (3.09 ± 0.25), (4.89 ± 0.11), and (3.91 ± 0.54) by CV, EIS, and CAM techniques, respectively, while the values for Pt-NHBA surface were pK a (3.16 ± 0.45), (4.24 ± 0.40), and (5.64 ± 0.12). The Pt-BA surface pK a values were lower in CV and CAM measurements relative to the bulk solution of BA, while a higher value was observed in EIS for Pt-BA surface. The pK a values determined for Pt-NHBA surface via both CV and EIS were lower than the bulk value; however, the result obtained from CAM was one unit higher than pK a of bulk pABA.  相似文献   

6.
Novel microcapsules (MCs) with organic/inorganic hybrid shell were successfully fabricated using epoxy resin as core material and nano boron nitride (BN) and mesoporous silica (SBA‐15) as inorganic shell materials in aqueous solution containing a water‐compatible epoxy resin curing agent. The morphologies, thermal properties and Young's moduli of MCs were investigated. The results indicated that epoxy resins were encapsulated by BN/SBA‐15/epoxy polymer hybrid layer, the resulting MCs were spherical in shape and the introduction of inorganic particles made MCs had rough surface morphology. The mean modulus value of MCs was from 2.8 to 3.1 GPa. The initial decomposition temperature (Tdi) of MCs at 5 wt% weight loss was from 309 to 312°C. MCs showed excellent thermal stability below 260°C. The structures and properties of MCs could be tailored by controlling the weight ratio of inorganic particle. When the weight ratio of BN to SBA‐15 was 0.15:0.10, MCs had the highest Tdi and modulus. The resulting MCs were applied to high performance 4,4′‐bismaleimidodiphenylmethane/O,O′‐diallylbisphenol A (BMI/DBA) system to design high performance BMI/DBA/MC systems. Appropriate content of MCs could improve the fracture toughness and maintain the glass transition temperature (Tg) of BMI/DBA system. The core materials released from fractured MCs could bond the fracture surfaces of the BMI/DBA matrix through the polymerization of epoxy resins. When the healing temperature schedule of 100°C/2h+150°C/1h was applied, 15 wt% MCs recovered 98% of the virgin fracture toughness of BMI/DBA. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Polyaniline nanoparticles were prepared on a highly oriented pyrolytic graphite (HOPG) surface from dilute polyaniline acidic solution (1 mM aniline+1 M HClO4) using a pulsed potentiostatic method. Electrochemistry, Fourier transform infrared external reflection spectroscopy (FT-IR-ERS), X-ray photoelectron spectroscopy (XPS) and tapping-mode atomic force microscopy (TMAFM) were used to characterize the composition and structure of the polyaniline nanoparticles. FT-IR-ERS and XPS results revealed that the polyaniline was in its emeraldine form. TMAFM measurement showed that the electropolymerized polyaniline nanoparticles dispersed on the HOPG surface with a coverage of about 1010 cm−2. These nanoparticles were disk-shaped having a height of 10–30 Å and an apparent diameter varying from 200 to 600 Å. The particle dimensions increased with the electropolymerization charge (Q) over the interval from 5.7 to 19.3 μC cm−2.  相似文献   

8.
Two bis(dimethylamimo)silanes with benzocyclobutene (BCB) groups, bis(dimethylamino)methyl(4′‐benzocyclobutenyl)silane ( 2 ) and bis(dimethylamino)methyl [2′‐(4′‐benzocyclobutenyl)vinyl]silane ( 4 ), were synthesized from different synthetic routes, which were then employed to prepare two novel silphenylene‐siloxane copolymers (SiBu and SiViBu) bearing latent reactive BCB groups by polycondensation procedure with 1,4‐bis(hydroxydimethylsilyl)benzene. At elevated temperatures these copolymers were readily converted to highly crosslinked films and molding disks with network structures by polymer chain crosslinking, which followed the first‐order kinetic reaction model. The final resins of SiBu and SiViBu demonstrated excellent thermal stability with high glass transition temperatures (218 and 256 °C) and high temperatures at 5% weight loss (553 and 526 °C in N2, 530 and 508 °C in air). After aging at 300 °C in air for 100 h, the cured resins showed weight loss lower than 4%. The films of cured SiBu and SiViBu also exhibited relatively low dielectric constants of 2.66 and 2.64, low dissipation factors of 2.23 and 2.12 × 10?3, low water absorptions (≤0.28%), and high transparence in the visible region with cutoff wavelengths of 321 and 314 nm. Moreover, the aged films exhibited good dielectric properties and low water absorptions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7868–7881, 2008  相似文献   

9.
In this paper, we prepared the light emitting diode (LED) encapsulant with self‐adhesion and high refractive index. In order to improve adhesion properties, we synthesized a series of multifunctional polysiloxanes with different contents of epoxy groups via the sol–gel condensation of methylvinyldimethoxysilane, diphenylsilanediol and 3‐glycidoxypropyldimethoxymethylsilane. The structures of epoxyphenylvinyl silicone (EPVS) resins were confirmed by proton nuclear magnetic resonance and Fourier‐transform infrared. The effect of epoxy group content on the adhesion property of EPVS resins was fully studied. The performances of the LED encapsulation materials based on EPVS resins were investigated in detail. These self‐adhesive encapsulating materials showed excellent thermal stability, a high refractive index of 1.55 and good adhesive property. These EPVSs can be used as an adhesion promoter for LED encapsulation materials. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, titanium surface modification by a thermal treatment using a polydimethylsiloxane (PDMS) coating was investigated. The surfaces of four titanium samples were surface treated by polishing, sandblasting, and coating with a PDMS with a thermal treatment at 800 and 1100 °C. The titanium surfaces were characterized by X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy. The effect of the surface treatments on adhesion of resin to titanium was assessed by shear adhesion strength test. XPS analysis showed that there was a change of elemental composition of titanium surfaces after surface treatment. Binding energy shifts for Si2p and O1s were observed after sandblasting and thermally treated PDMS. Therefore, chemical states of Si and O were changed. Atomic force microscopy analysis revealed that the surface topography of the Ti samples was different, and surface roughness was increased after sandblasting and thermal treatment of PDMS coating. Shear adhesion strength test results showed that the adhesion between resin and titanium is affected by the treatment temperature of PDMS coating. The highest adhesion is obtained at 1100 °C (14.7 ± 1.57 MPa). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Perovskite-type nanomaterials of the compositions La1-yCayMn1-xB″xO3±δ with B’’ = Ni, Fe; x = 0.2, 0.5 and y = 0.4, 0.25 were prepared using two different preparation routes (synthesis by precipitation and the PVA/sucrose method) at 500 °C–700 °C. The calcined products of the syntheses were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and physisorption measurements. The materials from the PVA/sucrose method contain particles with diameters from 33 nm to 48 nm, generate specific surface areas up to 33 m2/g and form pure compared to 45 nm–93 nm and up to 18 m2/g from precipitation method which contain a significant amount of sodium ions. The agglomeration process was analyzed for one nanomaterial (B’’ = Fe, x = 0.2, y = 0.4) from the PVA/sucrose method using temperature dependent XRD showing only a slight growth (4.3%) of nanoparticles at 600 °C. The materials from the PVA/sucrose method turned out to be more suitable as electrode materials in electrochemical applications (SOFC, sensors) because of smaller particle sizes, higher specific surface areas and purity.  相似文献   

12.
Average values for dispersion γsd and polar γsd contributions of the solid surface tension γs γsd + γsp for poly(methylene oxide) (PMO) and Na-treated polytetrafluoroethylene (PTFE) are determined by a new computational analysis of wettability data. PMO displays γsd equals; 21.8 ± 0.9 and γsp = 11.5 ± 1.5 dyn/cm while Na-treated PTFE displays γsd = 36.1 ± 3.0 and γsp = 14.5 ± 2.9 dyne/cm. These surfaces present the highest fractional surface polarity ps = γsps = 0.29-0.35 yet encountered for organic polymers or oriented monolayers. These unusual surface tension properties are correlated with surface chemistry and adhesion phenomena.  相似文献   

13.
Membrane introduction mass spectrometry (MIMS) is used to sample free radicals generated by thermolysis at atmospheric pressure. This is done by heating the solid sample in a custom-made probe that is fitted with a silicone membrane to allow selective and rapid introduction of the pyrolysates into the ion source of a triple quadrupole mass spectrometer. Phenyldiazonium radical (C6H5N 2 · ) and some of its ring-substituted analogs, the methoxy anilino radical CH3OC6H4NH·, and aryl radicals are generated by gas phase thermolysis of symmetrical aryl diazoamino compounds (ArNH-N2Ar). The radicals are identified by measurement of their ionization energies (IE) using threshold ionization efficiency data. A linear correlation between the ionization energy of the phenyldiazonium radicals and their Brown σ+ values is observed, and this confirms the formation of these species and validates the applicability of MIMS in sampling these radicals. The ionization energies of the aryldiazonium radicals are estimated as IE (p-CH3O-C6H4N 2 · ), 6.74 ± 0.2 eV; IE (p-CH3-C6H4N 2 · ), 7.72 ± 0.2 eV; IE (C6H5N 2 · ), 7.89 ± 0.2 eV; IE (m-Cl-C6H4N 2 · ), 7.91 ± 0.2 eV; IE (p-F-C6H 4 · N 2 · ), 8.03 ± 0.2 eV; and IE (m-NO2-C6H4N 2 · ), 8.90 = 0.2 eV. The ionization energies of the aryl radicals are estimated as IE (p-CH3O-C6H 4 · ), 7.33 ± 0.2 eV; IE (p-CH3-C6H 4 · ), 8.31 ± 0.2 eV; IE (C6H 5 · ), 8.44 ± 0.2 eV; IE (m-Cl-C6H 4 · ), 8.50 ± 0.2 eV and IE (p-F-C6H 4 · ), 8.54 ± 0.2 eV. Also, the ionization energy of the p-methoxyanilino radical (p-CH3O-C6H4NH·) is estimated as 7.63 ± 0.2 eV.  相似文献   

14.
We have investigated the thermal and structural properties of different commercial dental resins: FiltekTM Z-350, Grandio®, Tetric Ceram®, and TPH Spectrum®. The purpose of the present study was to evaluate quantitatively the photo-polymerization behavior and the effect of filler contents on the kinetic cures of the dental resins by using Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques. We have successfully obtained the low and high glass transition T g values of the dental composite resins from DSC curves. It was also observed a good agreement between the both T g values, activation energies from thermal degradation, and the degree of conversion obtained for all samples. The results have shown that Tetric Ceram® dental resin presented the higher T g values, activation energy of 215 ± 6 KJ mol?1, and the higher degree of conversion (63%) when compared to the other resins studied herein.  相似文献   

15.
用线性酚醛树脂(PN)和4-氨基苯基氨基砜(SAA)作为固化剂, 与刚性棒状环氧树脂联苯环氧(DGEBP)、四甲基联苯环氧(DGETMBP)和传统双酚A环氧树脂(DGEBA)分别进行固化. 研究了固化剂和环氧树脂化学结构的改变对热固网络相行为和热力学性能的影响. 结果表明, 刚性环氧网络比传统的DGEBA具有更好的热力学性能. DGEBP可形成不同类型的取向网络, 而取向态的类型也直接影响了热固网络的热力学性能. 用扫描电镜(SEM)观察不同网络体系的断裂面结构, 发现取向的刚性棒状环氧网络的断裂面呈韧性断裂, 而其它无定形环氧网络则呈典型的脆性断裂.  相似文献   

16.
In this work, benzocyclobutene‐introduced poly(silmethylene)s were synthesized by ring‐opening copolymerization of benzocyclobutene (BCB) functionalized disilacyclobutene with phenyldisilacyclobutene. The incorporation ratio of BCB was tailored by changing feeding ratio of 1,3‐dimethyl‐1,3‐dibenzocyclobutene‐1,3‐disilacyclobutane and 1,3‐dimethyl‐1,3‐diphenyl‐1,3‐disilacyclobutane, thus enabling the control of ultimate properties of cured resins. With increasing the incorporation ratios of BCB from 9.5 to 28.9 mol%, T5% of cured resins is improved from 404°C to 462°C, while the dielectric constant is decreased from 2.59 to 2.41 at 10 MHz. The excellent thermal stability and low‐dielectric performance make such thermosets potential inter‐layered or inter‐lined low‐dielectric media. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
A series of hot-melt processable thermosetting compositions was prepared by blending N,N,N′,N′-tetraglycidyl-4,4′ -diaminodiphenyl-methane/4,4′-diaminodiphenylsulfone (TGMDA/DDS) epoxy resin and thermoplastic polymer powders with average particle size below 30 μm. The basic thermoplastic polymers were either a high Tg amorphous cardo polyimide (Tg=350°C) or commercial semicrystalline PA6 and PA12 polyamides. The resulting heterogeneous mixtures showed viscosity values below 5000 cps suitable for prepregging process. After cure, phase-separated morphologies were maintained with a rather limited interphase miscibility as demonstrated by thermomechanical analysis. Scanning electron microscope examination of fracture surfaces pointed out a strong adhesion between the powder particles and the surrounding polyepoxy network, particularly for the potentially reactive polyamide structures. Moreover, as shown by differential scanning calorimeter analysis, the crystallinity ratio of the PA6 and PA12 powders was lowered due to melting during thermal polymerization. The fracture toughness properties of the powder-containing materials were compared with those of a fully miscible cardo polyimide–TGMDA/DDS blend coming from an homogeneous resin composition. The best improvement in fracture energy was obtained for the powder-modified resins. The most effective composition filled with 16 wt% of powdered polyimide exhibited a fourfold increase in GIC (388 J/m2 versus 100 J/m2) without compromising the epoxy thermomechanical stability (Tg=227°C versus 223°C).  相似文献   

18.
The present study investigated the essential oil obtained from Campomanesia guazumifolia (Cambess.) O. Berg, an aromatic plant used in Brazilian folk medicine. The chemical composition was performed by GC×GC/qMS. The antioxidant and antimicrobial activities were evaluated by DPPH and BCB and, MIC assays, respectively. Sixty-eight compounds were identified in the oil, where the major compounds were bicyclogermacrene (15%), globulol (5%) and spathulenol (5%). Sesquiterpene hydrocarbons (29 compounds) and oxygenated sesquiterpenes (20 compounds) were the most representative classes of terpenes. DPPH (IC50 value 26.1 ± 0.5 μg/mL) and BCB (68.3 ± 1.5%) values indicated a significant antioxidant activity. The essential oil strongly inhibited Staphylococcus aureus (MIC 15 ± 0.1 μg/mL), Escherichia coli (MIC 25 ± 0.2 μg/mL) and Candida albicans (MIC 5 ± 0.1 μg/mL). The results give a deeper understanding of the chemical composition and report for the first time the antioxidant and antimicrobial potential of the C. guazumifolia essential oil.  相似文献   

19.
High surface area porous W/Sn oxide nanomaterials were prepared via water/oil based (W/O) emulsion. Tungstic acid solution was generated by cation exchange of sodium tungstate in acidic Dowex resin. The acid was then mixed with a clear homogeneous aqueous N-cetyl trimethyl ammonium bromide (CTAB) solution followed by a slow addition of 0.2 M SnCl4 solution. The mixture was stirred for 24 h and then subjected to slow calcination at 500 °C. The prepared materials were characterized using SEM-EDX, BET surface area, and sorption of nitrogen and water. Fourier transform infrared spectroscopy (FTIR) was used to characterize the surface acidic properties using pyridine vapor as a probe. The materials were then tested toward the Dimethyl methylphosphonate (DMMP) adsorption at various temperatures using infrared spectroscopy. At elevated temperatures, the desorption of DMMP from WO3 and SnO2 surfaces results in forming methyl phosphonate that strongly bounds on the metal oxide surfaces. In contrast, the FTIR spectra showed that the adsorbed dimethyl methylphosphonate (DMMP) on the mixed W/Sn oxide powders can be molecularly desorbed without any decomposition.  相似文献   

20.
Absolute (flash photolysis) and relative (FTIR-smog chamber and GC) rate techniques were used to study the gas-phase reactions of Cl atoms with C2H6 (k1), C3H8 (k3), and n-C4H10 (k2). At 297 ± 1 K the results from the two relative rate techniques can be combined to give k2/k1 = (3.76 ± 0.20) and k3/k1 = (2.42 ± 0.10). Experiments performed at 298–540 K give k2/k1 = (2.0 ± 0.1)exp((183 ± 20)/T). At 296 K the reaction of Cl atoms with C3H8 produces yields of 43 ± 3% 1-propyl and 57 ± 3% 2-propyl radicals, while the reaction of Cl atoms with n-C4H10 produces 29 ± 2% 1-butyl and 71 ± 2% 2-butyl radicals. At 298 K and 10–700 torr of N2 diluent, 1- and 2-butyl radicals were found to react with Cl2 with rate coefficients which are 3.1 ± 0.2 and 2.8 ± 0.1 times greater than the corresponding reactions with O2. A flash-photolysis technique was used to measure k1 = (5.75 ± 0.45) × 10−11 and k2 = (2.15 ± 0.15) × 10−10 cm3 molecule−1 s−1 at 298 K, giving a rate coefficient ratio k2/k1 = 3.74 ± 0.40, in excellent agreement with the relative rate studies. The present results are used to put other, relative rate measurements of the reactions of chlorine atoms with alkanes on an absolute basis. It is found that the rate of hydrogen abstraction from a methyl group is not influenced by neighboring groups. The results are used to refine empirical approaches to predicting the reactivity of Cl atoms towards hydrocarbons. Finally, relative rate methods were used to measure rate coefficients at 298 K for the reaction of Cl atoms with 1- and 2-chloropropane and 1- and 2-chlorobutane of (4.8 ± 0.3) × 10−11, (2.0 ± 0.1) × 10−10, (1.1 ± 0.2) × 10−10, and (7.0 ± 0.8) × 10−11 cm3 molecule−1 s−1, respectively. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 43–55, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号