首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the Anderson–Weiss (AW) formalism, analytical expressions of the NMR signal are obtained for the following magic-angle spinning (MAS) experiments: total suppression of sidebands (TOSS); phase adjusted spinning sidebands (PASS); rotational-echo double-resonance (REDOR); rotor-encoded REDOR (REREDOR); cross-polarization magic-angle spinning (CPMAS); exchange induced sidebands (EIS); one-dimensional exchange spectroscopy by sideband alternation (ODESSA); time-reverse ODESSA (trODESSA); centerband-only detection of exchange (CODEX). In order to test the validity of the AW approach, the Gaussian powder approximation is compared with exact powder calculations. A quantitative study of the effect of molecular dynamics on the efficiency of the TOSS and REDOR pulse sequences is then presented.  相似文献   

2.
Previously, Ishii et al., could show that chelated paramagnetic ions can be employed to significantly decrease the recycle delay of a MAS solid-state NMR experiment [N.P. Wickramasinghe, M. Kotecha, A. Samoson, J. Past, Y. Ishii, Sensitivity enhancement in C-13 solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing H-1 T-1 relaxation, J. Magn. Reson. 184 (2007) 350-356]. Application of the method is limited to very robust samples, for which sample stability is not compromised by RF induced heating. In addition, probe integrity might be perturbed in standard MAS PRE experiments due to the use of very short duty cycles. We show that these deleterious effects can be avoided if perdeuterated proteins are employed that have been re-crystallized from D(2)O:H(2)O=9:1 containing buffer solutions. The experiments are demonstrated using the SH3 domain of chicken alpha-spectrin as a model system. The labeling scheme allows to record proton detected (1)H, (15)N correlation spectra with very high resolution in the absence of heteronuclear dipolar decoupling. Cu-edta as a doping reagent yields a reduction of the recycle delay by up to a factor of 15. In particular, we find that the (1)H T(1) for the bulk H(N) magnetization is reduced from 4.4s to 0.3s if the Cu-edta concentration is increased from 0mM to 250 mM. Possible perturbations like chemical shift changes or line broadening due to the paramagnetic chelate complex are minimal. No degradation of our samples was observed in the course of the experiments.  相似文献   

3.
4.
Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as “low-E,” was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane-embedded peptides.  相似文献   

5.
用MASNMB方法考察了几种含=CuX(X=Cl,Br,I)的Mo-Cu-S双金属簇化合物晶体粉末样品。对所得13C共振峰进行了归属并讨论了=CuX配体对谱峰的影响。对三种簇合物(t-BuNC)4Mo(t-BuS)2,(t-BuNC)4Mo(μ-t-BuS)2CuX和(t-BuNC)4Mo(μ-t-BuS)(μ-CO)CuX的晶体粉末13C谱进行了比较。提出了一种对微量粉末样品进行MASNMR研究的有效而简单的方法。  相似文献   

6.
Assignment of proteins in MAS (magic angle spinning) solid-state NMR relies so far on correlations among heteronuclei. This strategy is based on well dispersed resonances in the 15N dimension. In many complex cases like membrane proteins or amyloid fibrils, an additional frequency dimension is desirable in order to spread the amide resonances. We show here that proton detected HNCO, HNCA, and HNCACB type experiments can successfully be implemented in the solid-state. Coherences are sufficiently long lived to allow pulse schemes of a duration greater than 70 ms before incrementation of the first indirect dimension. The achieved resolution is comparable to the resolution obtained in solution-state NMR experiments. We demonstrate the experiments using a triply labeled sample of the SH3 domain of chicken α-spectrin, which was re-crystallized in H2O/D2O using a ratio of 1/9. We employ paramagnetic relaxation enhancement (PRE) using EDTA chelated CuII to enable rapid data acquisition.  相似文献   

7.
As demonstrated by means of the one-dimensional solid-state MAS exchange experiment (CODEX), the rate of the proton driven spin diffusion between backbone (15)N nuclei in totally enriched protein depends strongly on the magic angle spinning (MAS) frequency: spin diffusion at MAS frequency 16 kHz is about 4-5 times slower as compared to that at MAS frequency 1 kHz which is due to the averaging of the homo- and hetero-nuclear dipolar interactions by MAS. It is important that even at the highest MAS frequencies used in our experiments the spin diffusion rate is comparable or larger than typical values of the spin-lattice relaxation rates of backbone nitrogens in solid proteins. Thus, the precise quantitative analysis of (15)N T(1)'s in totally enriched solid proteins may lead to wrong quantitative results. On the other hand, the effectiveness of the (15)N-(15)N correlation and structure determination experiments making use of (15)N-(15)N distances can be increased by decreasing the MAS frequency as far as possible, which is counter intuitive to the commonly applied fast MAS conditions in order to reduce the dipolar-broadened line widths for increased spectral resolution.  相似文献   

8.
The present communication reports the experimental values of NMR spin-lattice relaxation time (T1) and dielectric relaxation time (τ) of piperidine, pyrrole, pyridine, diethylamine, triethylamine and pyrrolidine. The values of activation energy (ΔEA) obtained using dielectric relaxation time, have been correlated with calculated values of ΔEA obtained using Arrhenius equation of NMR relaxation time (T1) for pyridine, diethylamine and pyrrole. Authors have also established a correlation between the experimental values of NMR spin-relaxation time (T1) with its calculated values obtained using different equations of dielectric relaxation time (τ).  相似文献   

9.
基于核磁共振的统计全相关谱在大鼠肾脏组织中的应用   总被引:1,自引:0,他引:1  
生物组织是基于NMR的代谢组学研究的主要对象之一,广泛应用于分子病理学、毒理学、生物医学等众多领域. 但是,为了保证测定的准确,组织的NMR实验往往需要在较低的温度下和较短时间内完成,以防止由于组织内酶的降解和扩散而导致的某些代谢物质的分析信息被破坏. 统计全相关谱(Statistical Total Correlation Spectroscopy, STOCSY)是依靠一维谱来实现二维谱的一些功能的方法,不需要额外的实验时间,已经被广泛应用于代谢组学研究中. 本文采用STOCSY方法,通过对一系列1H高分辨魔角旋转谱的统计分析和计算,得到了肾脏组织的准二维相关谱,其中共振峰之间的相关较为准确的反应了物质之间的耦合信息,为物质的归属提供了帮助.  相似文献   

10.
固体核磁共振(NMR)中双交叉极化(DCP)是用于膜蛋白信号指认的多维异核相关实验的基本技术模块.DCP的效率在很大程度上决定了多维异核相关实验的效率.本文分析了3种典型的膜环境中的膜蛋白(AQPZ、DAGK和EV71 2B)的DCP效率及其影响因素.结果显示,在相同的实验条件下,3种蛋白样品的DCP效率存在明显差异:其中AQPZ的DCP效率最高(31%),DAGK的效率次之(23%),EV71 2B的效率最低(14%).通过测量它们在旋转坐标下的自旋-晶格弛豫时间(T)和偶极耦合常数(DHN),发现膜蛋白的运动会明显缩短T,但对DHN的影响较小.在实验的基础上,建立了T与DCP效率相关的模型,并基于DCP动力学的定量分析,证明了运动导致的T缩短是降低DCP效率的主要原因.因此,可以通过定量分析未知样品的T来预测其DCP的最优效率,为DCP实验的优化提供依据.  相似文献   

11.
27Al MAS,3Q MAS NMR研究了脱铝的丝光沸石和无定形硅铝胶中的铝配位态,在丝光沸石中检测到归属于扭曲四配位铝(Distorted Tetrahedrally Coordinated Al, DTA)的信号,通过与无定形硅铝胶的比较,发现扭曲四配位铝的存在是活化和脱铝酸性沸石的典型特征. 从这些结果推断:DTA可能是沸石骨架脱铝形成非骨架铝的中间状态.  相似文献   

12.
Recent progress in multi-dimensional solid-state NMR correlation spectroscopy at high static magnetic fields and ultra-fast magic-angle spinning is discussed. A focus of the review is on applications to protein resonance assignment and structure determination as well as on the characterization of protein dynamics in the solid state. First, the consequences of ultra-fast spinning on sensitivity and sample heating are considered. Recoupling and decoupling techniques at ultra-fast MAS are then presented, as well as more complex experiments assembled from these basic building blocks. Furthermore, we discuss new avenues in biomolecular solid-state NMR spectroscopy that become feasible in the ultra-fast spinning regime, such as sensitivity enhancement based on paramagnetic doping, and the prospect of direct proton detection.  相似文献   

13.
27Al MAS NMR has been used to study a sol–gel prepared alumina annealed at various temperatures. Two-field simulation of the sample heated to 1200 °C confirmed the presence of corundum, as suggested by XRD, and also the presence of nanocrystalline θ-Al2O3. 27Al MAS NMR chemical shifts, quadrupolar coupling constants and asymmetry parameters are reported for the tetrahedral and octahedral aluminium sites within θ-Al2O3.  相似文献   

14.
A solid complex of C60 with γ-cyclodextrin (γ-CyD) was examined with NMR spectroscopic methods in order to understand the dynamics of C60, and the interaction between C60 and γ-CyD. A 13C solid-state cross-polarization magic angle spinning (CP/MAS) NMR spectra shows C60 resonance at 142.6 ppm. This provides the evidence of interaction between 13C spins in C60 and 1H spins in the γ-CyD host. Ambient temperature experiments on the 13C CP/MAS NMR, with varying contact time, shows that the water associated with γ-CyDs plays an important role in the nuclear relaxation processes. The dynamics of C60 in γ-CyD was investigated using temperature and field-dependent 13C spin-lattice relaxation time measurements. The influence of water on the dynamics of C60 was less significant below 250 K.  相似文献   

15.
Sample heating induced by radio frequency (RF) irradiation presents a significant challenge to solid state NMR experiments in proteins and other biological systems, causing the sample to dehydrate which may result in distorted spectra and a damaged sample. In this work we describe a large volume, low-E (19)F-(1)H solid state NMR probe, which we developed for the 2D (19)F CPMG studies of dilute membrane proteins in a static and electrically lossy environment at 600MHz field. In (19)FCPMG and related multi-pulse (19)F-(1)H experiments the sample is heated by the conservative electric fields E produced in the sample coil at both (19)F and (1)H frequencies. Instead of using a traditional sample solenoid, our low-E (19)F-(1)H probe utilizes two orthogonal loop-gap resonators in order to minimize the conservative electric fields responsible for sample heating. Absence of the wavelength effects in loop-gap resonators results in homogeneous RF fields and enables the study of large sample volumes, an important feature for the dilute protein preparations. The orthogonal resonators also provide intrinsic isolation between the (19)F and (1)H channels, which is another major challenge for the (19)F-(1)H circuits where Larmor frequencies are only 6% apart. We detail steps to reduce (19)F background signals from the probe, which included careful choice of capacitor lubricants and manufacture of custom non-fluorinated coaxial cables. Application of the probe for two-dimensional (19)F CPMG spectroscopy in oriented lipid membranes is demonstrated with Flufenamic acid (FFA), a non-steroidal anti-inflammatory drug.  相似文献   

16.
Paramagnetic relaxation enhancement (PRE) solid-state NMR (ssNMR) was used to monitor the valence state alternation of copper species doped in HY zeolite during catalytic reaction processes. The combination of PRE ssNMR and in-situ NMR spectroscopy facilitates the detection of copper species as well as the monitoring of evolution from reactants, intermediates to products in heterogeneously catalyzed processes, which is of great importance for elucidating the detailed catalytic reaction mechanism.  相似文献   

17.
Static, magic angle spinning (MAS), variable angle spinning (VAS), dynamic angle spinning (DAS) and triple quantum magic angle spinning (3QMAS) NMR techniques were applied to separate and quantify oxygen signals from Al–O–Si and Si–O–Si sites of 17O-enriched samples of the mineral stilbite, a natural zeolite. DAS experiments showed that there was a distribution of quadrupolar coupling constants, asymmetry parameters and isotropic chemical shifts. Two methods were used to study the quantification problem of DAS and 3QMAS. Our results showed that DAS was quantitative. In 3QMAS, signal intensity from sites with larger quadrupolar coupling constants was reduced because of less efficient excitation. All techniques have shown a clear difference in rates of exchange between the two types of sites with interchannel H2O molecules.  相似文献   

18.
Asja Kozak 《Molecular physics》2013,111(20):2345-2356
It has been shown that if reorientational jumps of molecules or their parts take place through inequivalent potential barriers, it is possible to draw information on the multiplicity of the axis of reorientation from the spin-lattice T 1 time measurements in the NMR experiment. For the model of n potential wells of which one is deeper than the others, for n = 2, 3, 4, 6 the analytical formulae have been derived for the T 1 relaxation time as a function of the correlation time and n. The recurrent form of the formulae for the conditional probability of the well population has been obtained, which permits calculation of the relaxation time for any n.  相似文献   

19.
The molecular dynamics of poly(L-lactide) (PLLA) biopolymer was characterized through analyses of 1H and 2H NMR line-shapes and spin-lattice relaxation times at different temperatures. At low temperatures (e.g. 90 K), the methyl group rotation is dominant leading to a significant reduction in the proton second moment. Fast methyl group reorientation occurs at ca. 130 K. In additional to the fast methyl group rotation, hydroxyl groups start to reorient as the temperature increases further, eventually leading to the breakdown of the segments of the biopolymer chains above its glass transition temperature Tg of 323 K. The analyses of the 2H NMR line-shapes indicate that both the methyl and hydroxyl reorientations can be described by the so-called cone model, in which the former has three equilibrium positions with theta(C-D) = 70.5 degrees and phi = 120 degrees while the latter one exhibits two equilibrium positions with theta(O-D) = 78 degrees and phi = 180 degrees .  相似文献   

20.
High-temperature 23Na MAS NMR experiments up to 873 K for a number of different sodalites (Na8[AlSiO4]6(NO3)2, Na8[AlSiO4]6(NO2)2, Na8[AlSiO4]6I2, Na7.9[AlSiO4]6(SCN)7.9 · 0.5H2O, Na8[AlGeO4]6(NO3)2, and Na7[AlSiO4]6(H3O2) · 4H2O) were carried out. The spectra of the first five sodalites consist of a quadrupolar MAS pattern with different quadrupolar coupling constants. The quadrupolar interaction for the thiocyanate sodalite, the nitrate aluminosilicate, and germanate sodalite decreases strongly passing a coalescence state on heating, while the quadrupolar interaction of the iodide and nitrite sample shows nearly no change. The basic hydrosodalite shows an asymmetric lineshape at room temperature and, between 350 and 370 K, a second line due to the evaporation of cage-water emerges. The linewidth increases with rising temperature. The temperature dependence of the quadrupolar interaction seems to be a function of the sodalite β-cage expansion. Two conceivable jump mechanisms are proposed for a tetrahedral two-site jump between occupied and unoccupied tetrahedral sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号