首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
《Fluid Phase Equilibria》2004,224(2):169-183
Systems of N,N di(n-alkylamides) (hereafter, N,N-dialkylamides) with alkane, benzene, toluene, 1-alkanol or 1-alkyne have been investigated in the framework of the DISQUAC model. The corresponding interaction parameters are reported. They change regularly with the molecular structure of the mixture components. This variation is similar to those encountered when treating other systems in terms of DISQUAC. The model describes consistently a whole set of thermodynamic properties: liquid–liquid equilibria (LLE), vapor–liquid equilibria (VLE), solid–liquid equilibria (SLE), molar excess Gibbs energies (GE), molar excess enthalpies (HE), molar excess heat capacities at constant pressure (CPE), partial molar excess properties at infinite dilution, enthalpies and heat capacities. The model also provides good results for the Kirkwood–Buff integrals and for the linear coefficients of preferential solvation. For ternary systems, DISQUAC predictions on VLE and HE, obtained using binary parameters only, are in good agreement with the experimental data. A short comparison between DISQUAC and Dortmund UNIFAC results is shown. DISQUAC improves UNIFAC results on HE and CPE, magnitudes which strongly depend on the molecular structure. The investigated mixtures behave similarly to those characterized by thermodynamic properties which arise from dipolar interactions. Association/solvation effects do not play, as a whole, an important role in the studied systems. This may explain that the ERAS model fails when representing the thermodynamic properties of dimethylformamide + 1-alkanol mixtures.  相似文献   

3.
Molar excess enthalpies HE have been measured as a function of mole fraction at atmospheric pressure and 298.15 K for the binary liquid mixtures of ethanal, propanal, butanal and pentanal + benzene or + tetrachloromethane. The results show that the excess enthalpies decrease with increasing the n-alkanal chain length, with negative values for n-pentanal.  相似文献   

4.
《Fluid Phase Equilibria》1998,152(2):243-254
Molar excess enthalpies, HE, at 303.15 K and atmospheric pressure, of n-propyl-, n-butyl-, n-pentyl-, n-octyl- or n-decylamine+toluene, as well as the isothermal vapour–liquid equilibria, VLE, of n-butylamine+toluene and of n-butylamine+benzene at 298.15 K have been determined. These experimental results, along with the data available in the literature on molar excess Gibbs energies, GE, activity coefficients at infinite dilution, γi, and molar excess enthalpies, HE, for n-alkylamine+toluene mixtures are examined on the basis of the DISQUAC group contribution model. The modified UNIFAC is also used to describe the mixtures.  相似文献   

5.
《Fluid Phase Equilibria》2004,218(2):247-260
Density (ρ) and viscosity (η) values of the binary mixtures of phenetole+1-pentanol, + 1-hexanol, + 1-heptanol, + 1-octanol, + 1-nonanol, and + 1-decanol over the entire range of mole fraction at 293.15, 298.15, 308.15, and 318.15 K have been measured at atmospheric pressure. The excess molar volume (VE), viscosity deviations (Δη), and excess Gibbs energy of activation (G*E) have been calculated from the experimental measurements. These results were fitted to Redlich and Kister polynomial equation to estimate the binary interaction parameters. The viscosity data were correlated with equations of Grunberg and Nissan, Hind et al., Frenkel, and McAllister. While the excess molar volumes of phenetole+1-pentanol, + 1-hexanol are positive, the remaining binary mixtures are negative. The viscosity deviations and excess Gibbs energy of activation are negative for all investigated systems. As the chain length of 1-alkanols increases, both viscosity deviations and excess molar volume values decrease while excess Gibbs energy of activation value increase. The temperature has no effect on excess molar volume, slight effect on excess Gibbs energy of activation, and significant effect on viscosity deviations. The calculated functions have been used to explain the intermolecular interaction between the mixing components.  相似文献   

6.
7.
This paper presents experimental data for the excess molar enthalpies HmEand excess molar volumes VmEat T =  298.15 K and atmospheric pressure for 21 binary mixtures consisting of one of three pentyl esters (ethanoate, propanoate, and pentanoate) and one of seven odd n -alkanes (from pentane to heptadecane). The results have shown the mixing of these mixtures to be endothermic, with HmEvarying uniformly with the n -alkane chain length. The variation of VmEwas also found to be uniform, with contraction effects observed for the mixtures that contained low molecular-weight hydrocarbons, and increasing with the pentyl ester chain length. Different group-contribution theories were used to calculate the excess properties for (an ester  +  an n -alkane). Comparison of the calculated and experimental results revealed that, in most cases, the differences increased with the molecular weight of the components. However, the differences for the calculated values of the excess volumes using the model of Nitta et al. decreased with n -alkane chain length but increased with ester chain length, the mean differences for the excess volumes being larger than 20 per cent.  相似文献   

8.
Molar excess volumes, VE, for pyridine (A) + α-picoline (B), + β-picoline (B) and + γ-picoline (B) and benzene (A) + toluene (B), + o-xylene (B) and + p-xylene (B) and carbon tetrachloride (A) + n-heptane (B) have been measured dilatometrically as a function of temperature and composition and have been utilized to study B—B and B—B—B interactions in the presence of A via the Mayer—McMillan approach. A model has also been presented to account for these B—B and B—B—B interactions. The VE data at 308.15 K have also been analysed in terms of the “graph theoretical” approach which describes the VE data well for all these mixtures at 308.15 K. The “graph theoretical” approach has further been extended to successfully evaluate VE data for a mixture at any temperature, T2, when the VE data at T1 are known.  相似文献   

9.
Calorimetric measurements of molar excess enthalpies, HE, at 298.15 K, of mixtures containing aromatic aldehydes of general formula C6H5(CH2)mCHO (with m = 0, 1 and 2) + n-hexane, n-heptane or benzene are reported, together with the values of HE at equimolar composition compared with the corresponding values of HE for the aromatic ketones in the same solvents. The experimental results clearly indicate that the intermolecular interactions between the carbonyl groups (CHO) are influenced by the intramolecular interactions between the carbonyl and phenyl groups, particularly for the mixtures containing benzaldehyde.  相似文献   

10.
Excess volumes VE measured at 298.15 K in a successive-dilution dilatometer are reported for binary mixtures of the n-alkanols C1 to C4 + n-heptane. For ethanol +, and n-butanol + n-heptane, the measurements were extended to high dilutions of alkanol. VE is positive for all of the mixtures but decreases rapidly in magnitude for increasing chain length of the n-alkanol. The results were used to estimate the excess partial molar volumes of the components.  相似文献   

11.
The molar excess enthalpiesH E for the water +N-methyl-2-pyrrolidinone binary mixtures have been measured as functions of mole fraction at 298.15, 308.15 and 318.15 K, using isoperibol rotating calorimeter. A hydrogen bonding pairs model proposed by Luzar was fitted to the experimental dataH E,G E for the binary mixtures of water with hexamethylphosphoric triamide, N,N-dimethylformamide, N,N-dimethylacetamide and N-methyl-2-pyrrolidinone.  相似文献   

12.
Densities ρ, dynamic viscosities η, for binary mixtures of toluene with some n-alkanes, namely, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane have been measured over the complete composition range. Excess molar volumes VE, viscosity deviations Δη, and excess Gibbs free energy of activation ΔG1E, were calculated there from and were correlated by Redlich–Kister type function in terms of mole fractions. For mixtures of toluene with n-pentane and n-hexane the VE is negative and for the remaining systems is positive. The Δη values are negative for all the studied mixtures. The ΔG1E values shows the positive values for the binary mixtures with n-decane, whereas the negative values have been observed for all the remaining binary mixtures. From the results, the excess thermal expansivities at constant pressure αE, is also estimated. The Prigogine–Flory–Patterson (PFP) theory and its applicability in predicting VE is tested. The results obtained for viscosity of binary mixtures were used to test the semi-empirical relations of Grunberg and Nissan, Tamura and Kurata, Hind et al., Katti and Chaudhri, McAllister, Heric, Kendall, and Monroe. The experimental on the constituted binaries are analyzed to discus the nature and strength of intermolecular interactions in these mixtures.  相似文献   

13.
Binary mixtures containing pyridine (PY), or 2-methylpyridine (2MPY) or 3-methylpyridine (3MPY) or 4-methylpyridine (4MPY) and an organic solvent as benzene, toluene, alkane, or 1-alkanol are investigated in the framework of DISQUAC. The corresponding interaction parameters are reported. The model describes accurately a whole set of thermodynamic properties: vapor-liquid equilibria (VLE), liquid-liquid equilibria (LLE), solid-liquid equilibria (SLE), molar excess Gibbs energies (GE), molar excess enthalpies, (HE), molar excess heat capacities at constant pressure () and the concentration-concentration structure factor (SCC(0)). It is remarkable that DISQUAC correctly predicts the W-shaped curve of the of the pyridine + n-hexadecane system. The model can be applied successfully to mixtures with strong positive or negative deviations from the Raoult's law. DISQUAC improves the theoretical results from UNIFAC (Dortmund version). The replacement of pyridine by a methylpyridine leads to a weakening of the amine-amine interactions, ascribed to the steric effect caused by the methyl group attached to the aromatic ring. This explains that for a given solvent (alkane, 1-alkanol) HE(pyridine) > HE(methylpyridine).  相似文献   

14.
《Fluid Phase Equilibria》1999,163(2):231-242
Molar excess enthalpies, HE, at 303.15 K and atmospheric pressure, of n-propyl-, n-butyl-, n-pentyl-, n-octyl- or n-decylamine+ethylbenzene, as well as the isothermal vapour–liquid equilibrium (VLE) of n-butylamine+ethylbenzene at 298.15 K have been determined. These experimental results, along with the data available in the literature on molar excess Gibbs energies, GE, for n-alkylamine+ethylbenzene mixtures are examined on the basis of the DISQUAC group contribution model. The modified (mod.) UNIFAC is also used to describe the mixtures.  相似文献   

15.
An approach based on the “graph” theory has been evolved to predict molar excess enthalpies, HE, and molar excess volumes, VE, for a number of binary mixtures of non-electrolytes. The calculated HE and VE values compare reasonably well with their corresponding experimental values. The limitations of this approach have also been discussed.  相似文献   

16.
Molar excess volumes, VE, molar excess enthalpies, HE, and speeds of sound, u, of o-toluidine (i) + cyclohexane or n-hexane or n-heptane (j) binary mixtures have been determined over entire range of composition at 308.15 K. Speeds of sound data have been utilized to predict isentropic compressibility changes of mixing, of (i + j) mixtures. The observed VE, HE and data have been analyzed in terms of Graph theory. The analysis of VE data by Graph theory reveals that o-toluidine exists as an associated molecular entity and (i + j) mixtures contain 1:1 molecular complex. It has been observed that VE, HE and values calculated by Graph theory compare well with their corresponding experimental values. The observed data have also been analyzed in term of Flory theory.  相似文献   

17.
18.
《Fluid Phase Equilibria》2003,204(2):281-294
The excess molar volume VE, the viscosity deviation Δη and the excess Gibbs energy of activation ΔG1E of viscous flow are calculated from density and viscosity measurements of six mixtures of 1-propanol, 1-butanol, 1-pentanol, 1-heptanol, 1-octanol and 1-decanol with tri-n-butylamine over the entire range of mole fractions at 303.15 and 313.15 K. The values of VE of all six systems are very large and negative. Except for 1-propanol+tri-n-butylamine, the magnitude of negative deviations in viscosity increases with chain length of alkanol. The results have been explained considering mixed associated species of type AiB involving alkanol (A) with tri-n-butylamine (B) through OH⋯N bonds. The viscosity data have been correlated with the equations of Grunberg and Nissan, Tamura and Kurata, Hind, McLaughlin and Ubbelohde, Katti and Chaudhri, McAllister, Heric, and of Auslaender.  相似文献   

19.
Densities have been obtained as a function of composition for ternary-pseudobinary mixtures of [(benzene + tetrachloromethane or n-hexane) + (cyclohexane + tetrachloromethane or n-hexane)] at atmospheric pressure and the temperature 298.15 K, by means of a vibrating-tube densimeter. Excess molar volumes, VmE, partial molar volumes and excess partial molar volumes were calculated from the density data. The values of VmE have been correlated using the Redlich–Kister equation and the coefficients and standard errors were estimated. The experimental and calculated quantities are used to discuss the mixing behavior of the components. The results show that the third component, CCl4 or n-C6H14, have quite different influences on the volumetric properties of binary liquid mixtures of benzene with cyclohexane.  相似文献   

20.
The method of Hanks et al. for predicting vapor—liquid equilibrium (VLE) from heat of mixing (hE) data was successfully applied to binary hydrocarbon—ketone mixtures. The LEMF model for the excess free energy was found to be the most adequate to correlate experimental gE and hE data simultaneously for these mixtures. The predicted vapor-liquid equilibrium values were compared to experimental values and good agreement was found. The dependence of the accuracy of the VLE data predictions on the experimental uncertainties of heat of mixing data and on the set of parameters obtained by fitting these data to the algebraic equation for hE is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号