首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of the lithiated diamido-pyridine or diamido-amine ligands Li(2)N(2)N(py) or Li(2)N(2)N(am) with [W(NAr)Cl(4)(THF)] (Ar = Ph or 2,6-C(6)H(3)Me(2); THF = tetrahydrofuran) afforded the corresponding imido-dichloride complexes [W(NAr)(N(2)N(py))Cl(2)] (R = Ph, 1, or 2,6-C(6)H(3)Me(2), 2) or [W(NAr)(N(2)N(am))Cl(2)] (R = Ph, 3, or 2,6-C(6)H(3)Me(2), 4), respectively, where N(2)N(py) = MeC(2-C(5)H(4)N)(CH(2)NSiMe(3))(2) and N(2)N(am) = Me(3)SiN(CH(2)CH(2)NSiMe(3))(2). Subsequent reactions of 1 with MeMgBr or PhMgCl afforded the dimethyl or diphenyl complexes [W(NPh)(N(2)N(py))R(2)] (R = Me, 5, or Ph, 6), respectively, which have both been characterized by single crystal X-ray diffraction. Reactions of Li(2)N(2)N(py) or Li(2)N(2)N(am) with [Mo(NR)(2)Cl(2)(DME)] (R = (t)Bu or Ph; DME = 1,2-dimethoxyethane) afforded the corresponding bis(imido) complexes [Mo(NR)(2)(N(2)N(py))] (R = (t)Bu, 7, or Ph, 8) and [Mo(N(t)Bu)(2)(N(2)N(am))] (9).  相似文献   

2.
A series of sterically varied aryl alcohols H-OAr [OAr = OC6H5 (OPh), OC6H4(2-Me) (oMP), OC6H3(2,6-(Me))2 (DMP), OC6H4(2-Pr(i)) (oPP), OC6H3(2,6-(Pr(i)))2 (DIP), OC6H4(2-Bu(t)) (oBP), OC6H3(2,6-(Bu(t)))2 (DBP); Me = CH3, Pr(i) = CHMe2, and Bu(t) = CMe3] were reacted with LiN(SiMe3)2 in a Lewis basic solvent [tetrahydrofuran (THF) or pyridine (py)] to generate the appropriate "Li(OAr)(solv)x". In the presence of THF, the OPh derivative was previously identified as the hexagonal prismatic complex [Li(OPh)(THF)]6; however, the structure isolated from the above route proved to be the tetranuclear species [Li(OPh)(THF)]4 (1). The other "Li(OAr)(THF)x" products isolated were characterized by single-crystal X-ray diffraction as [Li(OAr)(THF)]4 [OAr = oMP (2), DMP (3), oPP (4)], [Li(DIP)(THF)]3 (5), [Li(oBP)(THF)2]2, (6), and [Li(DBP)(THF)]2, (7). The tetranuclear species (1-4) consist of symmetric cubes of alternating tetrahedral Li and pyramidal O atoms, with terminal THF solvent molecules bound to each metal center. The trinuclear species 5 consists of a six-membered ring of alternating trigonal planar Li and bridging O atoms, with one THF solvent molecule bound to each metal center. Compound 6 possesses two Li atoms that adopt tetrahedral geometries involving two bridging oBP and two terminal THF ligands. The structure of 7 was identical to the previously reported [Li(DBP)(THF)]2 species, but different unit cell parameters were observed. Compound 7 varies from 6 in that only one solvent molecule is bound to each Li metal center of 7 because of the steric bulk of the DBP ligand. In contrast to the structurally diverse THF adducts, when py was used as the solvent, the appropriate "Li(OAr)(py)x" complexes were isolated as [Li(OAr)(py)2]2 (OAr = OPh (8), oMP (9), DMP (10), oPP (11), DIP (12), oBP (13)) and [Li(DBP)(py)]2 (14). Compounds 8-13 adopt a dinuclear, edge-shared tetrahedral complex. For 14, because of the steric crowding of the DBP ligand, only one py is coordinated, yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand: [Li(DIP)(H-DIP)(py)]2 (12b) and [Li2(DIP)2(py)3] (12c). Multinuclear (6,7Li and 13C) solid-state MAS NMR spectroscopic studies indicate that the bulk powder possesses several Li environments for "transitional ligands" of the THF complexes; however, the py adducts possess only one Li environment, which is consistent with the solid-state structures. Solution NMR studies indicate that "transitional" compounds of the THF precursors display multiple species in solution whereas the py adducts display only one lithium environment.  相似文献   

3.
Trialkyl imido niobium and tantalum complexes [MR(3)(NtBu)] (M = Nb, R = Me 2, CH(2)CMe(3)3, CH(2)CMe(2)Ph 4, CH(2)SiMe(3)5; M = Ta, R = Me 6, CH(2)CMe(2)Ph 7, CH(2)SiMe(3)8) have been prepared by treatment of solutions containing [MCl(3)(NtBu)py(2)] (M = Nb 1a, Ta 1b) with three equivalents of magnesium reagent. By an unexpected hydrolysis reaction of the tris-trimethylsilylmethyl imido tantalum compound 8a, a μ-oxo derivative [(Me(3)SiCH(2)O)(Me(3)SiCH(2))(3)Ta(μ-O)Ta(CH(2)SiMe(3))(2)(NtBu)] (8a) was formed and its structure was studied by X-ray diffraction methods. Reactions of trialkyl imido compounds with two equivalents of isocyanide 2,6-Me(2)C(6)H(3)NC result in the migration of two alkyl groups, leading to the formation of a series of alkyl imido bisiminoacyl derivatives [MR(NtBu){C(R)NAr}(2)] (Ar = 2,6-Me(2)C(6)H(3); M = Nb, R = Me 9, CH(2)CMe(3)10, CH(2)CMe(2)Ph 11, CH(2)SiMe(3)12, CH(2)Ph 13; M = Ta, R = CH(2)CMe(3)14, CH(2)CMe(2)Ph 15, CH(2)SiMe(3)16). All compounds were studied by IR and NMR ((1)H, (13)C and (15)N) spectroscopy.  相似文献   

4.
New mononuclear titanium and zirconium imido complexes [M(NR)(R'(2)calix)] [M=Ti, R'=Me, R=tBu (1), R=2,6-C(6)H(3)Me(2) (2), R=2,6-C(6)H(3)iPr(2) (3), R=2,4,6-C(6)H(2)Me(3) (4); M=Ti, R'=Bz, R=tBu (5), R=2,6-C(6)H(3)Me(2) (6), R=2,6-C(6)H(3)iPr(2) (7); M=Zr, R'=Me, R=2,6-C(6)H(3)iPr(2) (8)] supported by 1,3-diorganyl ether p-tert-butylcalix[4]arenes (R'(2)calix) were prepared in good yield from the readily available complexes [MCl(2)(Me(2)calix)], [Ti(NR)Cl(2)(py)(3)], and [Ti(NR)Cl(2)(NHMe(2))(2)]. The crystallographically characterised complex [Ti(NtBu)(Me(2)calix)] (1) reacts readily with CO(2), CS(2), and p-tolyl-isocyanate to give the isolated complexes [Ti[N(tBu)C(O)O](Me(2)calix)] (10), [[Ti(mu-O)(Me(2)calix)](2)] (11), [[Ti(mu-S)(Me(2)calix)](2)] (12), and [Ti[N(tBu)C(O)N(-4-C(6)H(4)Me)](Me(2)calix)] (13). In the case of CO(2) and CS(2), the addition of the heterocumulene to the Ti-N multiple bond is followed by a cycloreversion reaction to give the dinuclear complexes 11 and 12. The X-ray structure of 13.4(C(7)H(8)) clearly establishes the N,N'-coordination mode of the ureate ligand in this compound. Complex 1 undergoes tert-butyl/arylamine exchange reactions to form 2, 3, [Ti(N-4-C(6)H(4)Me)(Me(2)calix)] (14), [Ti(N-4-C(6)H(4)Fc)(Me(2)calix)] (15) [Fc=Fe(eta(5)-C(5)H(5))(eta(5)-C(5)H(4))], and [[Ti(Me(2)calix)](2)[mu-(N-4-C(6)H(4))(2)CH(2)]] (16). Reaction of 1 with H(2)O, H(2)S and HCl afforded the compounds [[Ti(mu-O)(Me(2)calix)](2)] (11), [[Ti(mu-S)(Me(2)calix)](2)] (12), and [TiCl(2)(Me(2)calix)] in excellent yields. Furthermore, treatment of 1 with two equivalents of phenols results in the formation of [Ti(O-4-C(6)H(4)R)(2)(Me(2)calix)] (R=Me 17 or tBu 18), [Ti(O-2,6-C(6)H(3)Me(2))(2)(Me(2)calix)] (19) and [Ti(mbmp)(Me(2)calix)] (20; H(2)mbmp=2,2'-methylene-bis(4-methyl-6-tert-butylphenol) or CH(2)([CH(3)][C(4)H(9)]C(6)H(2)-OH)(2)). The bis(phenolate) compounds 17 and 18 with para-substituted phenolate ligands undergo elimination and/or rearrangement reactions in the nonpolar solvents pentane or hexane. The metal-containing products of the elimination reactions are dinuclear complexes [[Ti(O-4-C(6)H(4)R)(Mecalix)](2)] [R=Me (23) or tBu (24)] where Mecalix=monomethyl ether of p-tert-butylcalix[4]arene. The products of the rearrangement reaction are [Ti(O-4-C(6)H(4)Me)(2) (paco-Me(2)calix)] (25) and [Ti(O-4-C(6)H(4)tBu)(2)(paco-Me(2)calix)] (26), in which the metallated calix[4]arene ligand is coordinated in a form reminiscent of the partial cone (paco) conformation of calix[4]arene. In these compounds, one of the methoxy groups is located inside the cavity of the calix[4]arene ligand. The complexes 24, 25 and 26 have been crystallographically characterised. Complexes with sterically more demanding phenolate ligands, namely 19 and 20 and the analogous zirconium complexes [Zr(O-4-C(6)H(4)Me)(2)(Me(2)calix)] (21) and [Zr(O-2,6-C(6)H(3)Me(2))(2)(Me(2)calix)] (22) do not rearrange. Density functional calculations for the model complexes [M(OC(6)H(5))(2)(Me(2)calix)] with the calixarene possessing either cone or partial cone conformations are briefly presented.  相似文献   

5.
Using either an ammoniacal route, the reaction between DyCl3, Na0, and HOR in liquid ammonia, or preferentially reacting Dy(N(SiMe3)2)3 with HOR in a solvent, we isolated a family of dysprosium alkoxides as [Dy(mu-ONep)2(ONep)]4 (1), (ONep)2Dy[(mu3-ONep)(mu-ONep)Dy(ONep)(THF)]2(mu-ONep) (2), (ONep)2Dy[(mu3-ONep)(mu-ONep)Dy(ONep)(py)]2(mu-ONep) (3), [Dy3(mu3-OBut)2(mu-OBut3(OBut)4(HOBut)2] (4), [Dy3(mu3-OBut)2(mu-OBut)3(OBut)4(THF)2] (5), [Dy3(mu3-OBut)2(mu-OBut)3(OBut)4(py)2] (6), (DMP)Dy(mu-DMP)4[Dy(DMP)2(NH3)]2 (7), [Dy(eta6-DMP)(DMP)2]2 (8), Dy(DMP)3(THF)3 (9), Dy(DMP)3(py)3 (10), Dy(DIP)3(NH3)2 (11), [Dy(eta6-DIP)(DIP)2]2 (12), Dy(DIP)3(THF)2 (13), Dy(DIP)3(py)3 (14), Dy(DBP)3(NH3) (15), Dy(DBP)3 (16), Dy(DBP)3(THF) (17), Dy(DBP)3(py)2 (18), [Dy(mu-TPS)(TPS2]2 (19), Dy(TPS)3(THF)3 (20), and Dy(TPS)3(py)3 (21), where ONep = OCH2CMe3, OBut) = OCMe3, DMP = OC6H3(Me)(2)-2,6, DIP = OC6H3(CHMe2)(2)-2,6, DBP = OC6H3(CMe3)(2)-2,6, TPS = OSi(C6H5)3, tol = toluene, THF = tetrahydrofuran, and py = pyridine. We were not able to obtain X-ray quality crystals of compounds 2, 8, and 9. The structures observed and data collected for the Dy compounds are consistent with those reported for its other congeners. A number of these precursors were used as Dy dopants in Pb(Zr0.3Ti0.7)O3 (PZT 30/70) thin films, with compound 12 yielding the highest-quality films. The resulting Pb0.94Dy0.04(Zr0.3Ti0.7)O3 [PDyZT (4/30/70)] had similar properties to PZT (30/70), but showed substantial resistance to polarization reversal fatigue.  相似文献   

6.
Reaction of [Ti(NR)Cl2(py)3] (R=tBu or 2,6-iPr2C6H3) with K(2)[COT] (COT=C8H8) or Li2[COT'] (COT'=1,4-C8H6(SiMe3)2) gave the monomeric complexes [Ti(NR)(eta8-COT)] or [Ti(NR)(eta8-COT')], respectively. The pseudo-two coordinate, "pogo stick" geometry for these complexes is unique in both early transition-metal and cyclooctatetraenyl ligand chemistry. In contrast, reaction of [Ti(N-2,6-Me2C6H3)Cl2(py)3] with K2[COT] gave the mu-imido-bridged dimer [Ti2(mu-N-2,6-Me2C6H3)2(eta8-COT)2]. It appears that as the steric bulk of the imido and C8 ring substituents are decreased, dimerisation becomes more favourable. Aryl imido COT complexes were also prepared by imido ligand exchange reactions between anilines and [Ti(NtBu)(eta(8)-COT)] or [Ti(NtBu)(eta(8)-COT')]. The complexes [Ti(NtBu)(eta(8)-COT)], [Ti(N-2,6-iPr2C6H3)2(eta8-COT)] and [Ti2(mu-N-2,6-Me2C6H3)2(eta8-COT)2] have been crystallographically characterised. The electronic structures of both the monomeric and dimeric complexes have been investigated by using density functional theory (DFT) calculations and gas-phase photoelectron spectroscopy. The most striking aspect of the bonding is that binding to the imido nitrogen atom is primarily through sigma and pi interactions, whereas that to the COT or COT' ring is almost exclusively through delta symmetry orbitals. A DFT-based comparison between the bonding in [Ti(NtBu)(eta8-COT)] and the bonding in the previously reported late transition-metal "pogo stick"complexes [Os(NtBu)(eta6-C6Me6)], [Ir(NtBu)(eta5-C5Me5)] and [Ni(NO)(eta5-C5H5)] has also been undertaken.  相似文献   

7.
The reaction of [Ti(NR)Cl(2)(py)(3)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) with [{Li(bdmpza)(H(2)O)}(4)][bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate] and [{Li(bdmpzdta)(H(2)O)}(4)][bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate] affords the corresponding complexes [Ti(NR)Cl(kappa(3)-bdmpzx)(py)](x = a, R = (t)Bu 1, p-tolyl 2, 2,6-C(6)H(3)(i)Pr(2) 3; x = dta, R =(t)Bu 4, p-tolyl , 2,6-C(6)H(3)(i)Pr(2) 6), which are the first examples of imido Group 4 complexes stabilized by heteroscorpionate ligands. The solid-state X-ray crystal structure of 1 has been determined. The titanium centre is six-coordinate with three fac-sites occupied by the heteroscorpionate ligand and the remainder of the coordination sphere being completed by chloride, imido and pyridine ligands. The complexes are 1-6 fluxional at room temperature. The pyridine ortho- and meta-proton resonances show evidence of dynamic behaviour for this ligand and variable-temperature NMR studies were carried out in order to study their dynamic behaviour in solution. The complexes [Nb(NR)Cl(3)(py)(2)](R = (t)Bu, p-tolyl, 2,6-C(6)H(3)(i)Pr(2)) reacted with [{Li(bdmpza)(H(2)O)}(4)] and (Hbdmpze)[bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide], the latter with prior addition of (n)BuLi, to give the complexes [Nb(NR)Cl(2)(kappa(3)-bdmpzx)](x = a, R =(t)Bu 7, p-tolyl 8, 2,6-C(6)H(3)(i)Pr(2) 9; x = e, R = (t)Bu 10, p-tolyl 11, 2,6-C(6)H(3)(i)Pr(2)) 12 and these are the first examples of imido Group 5 complexes with heteroscorpionate ligands. The structures of these complexes have been determined by spectroscopic methods.  相似文献   

8.
The crystalline compounds [Mg(Br)(L)(thf)].0.5Et2O [L = {N(R)C(C6H3Me2-2,6)}2SiR, R = SiMe3] (1), [Mg(L){N=C=C(C(Me)=CH)2CH2}(D)2] [D = NCC6H3Me2-2,6 (2), thf (3)] and [{Mg(L)}2{mu-OSO(CF3)O-[mu}2] (4) were prepared from (a) Si(Br)(R){C(C6H3Me2-2,6)=NR}2 and Mg for (1), (b) [Mg(SiR3)2(thf)2] and 2,6-Me2C6H3CN (5 mol for (2), 3 mol for (3)), and (c) (2) + Me3SiOS(O)2CF3 for (4); a coproduct from (c) is believed to have been the trimethylsilyl ketenimide Me3SiN=C=C{C(Me)=CH}2CH2 (5).  相似文献   

9.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

10.
Attempts to prepare mixed-ligand zinc-zinc-bonded compounds that contain bulky C(5)Me(5) and terphenyl groups, [Zn(2)(C(5)Me(5))(Ar')], lead to disproportionation. The resulting half-sandwich Zn(II) complexes [(η(5)-C(5)Me(5))ZnAr'] (Ar' = 2,6-(2,6-(i)Pr(2)C(6)H(3))(2)-C(6)H(3), 2; 2,6-(2,6-Me(2)C(6)H(3))(2)-C(6)H(3), 3) can also be obtained from the reaction of [Zn(C(5)Me(5))(2)] with the corresponding LiAr'. In the presence of pyr-py (4-pyrrolidinopyridine) or DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), [Zn(2)(η(5)-C(5)Me(5))(2)] reacts with C(5)Me(5)OH to afford the tetrametallic complexes [Zn(2)(η(5)-C(5)Me(5))L(μ-OC(5)Me(5))](2) (L = pyr-py, 6; DBU, 8), respectively. The bulkier terphenyloxide Ar(Mes)O(-) group (Ar(Mes) = 2,6-(2,4,6-Me(3)C(6)H(2))(2)-C(6)H(3)) gives instead the dimetallic compound [Zn(2)(η(5)-C(5)Me(5))(OAr(Mes))(pyr-py)(2)], 7, that features a terminal Zn-OAr(Mes) bond. DFT calculations on models of 6-8 and also on the Zn-Zn-bonded complexes [Zn(2)(η(5)-C(5)H(5))(OC(5)H(5))(py)(2)] and [(η(5)-C(5)H(5))ZnZn(py)(3)](+) have been performed and reveal the nonsymmetric nature of the Zn-Zn bond with lower charge and higher participation of the s orbital of the zinc atom coordinated to the cyclopentadienyl ligand with respect to the metal within the pseudo-ZnL(3) fragment. Cyclic voltammetric studies on [Zn(2)(η(5)-C(5)Me(5))(2)] have been also carried out and the results compared with the behavior of [Zn(C(5)Me(5))(2)] and related magnesium and calcium metallocenes.  相似文献   

11.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

12.
Ketimino(phosphino)gold(I) complexes of the type [Au[NR=C(Me)R']L]X (X = ClO4, R = H, L = PPh3, R'=Me (la), Et (2a); L=PAr3 (Ar=C6H4OMe-4), R'=Me (1b), Et (2b); L=PPh3, R=R'=Me (3); X= CF3SO3 (OTf), L=PPh3, R=R'=Me (3'); R=Ar, R'=Me (4)) have been prepared from [Au(acac)L] (acac = acetyl acetonate) and ammonium salts [RNH3]X dissolved in the appropriate ketone MeC(O)R'. Complexes [Au(NH=CMe2)2]X (X = C1O4 (6), OTf (6')) were obtained from solutions of [Au(NH3)2]X in acetone. The reaction of 6 with PPN[AuCl2] or with PhICl2 gave [AuCl(NH=CMe2)] (7) or [AuCI2(NH=CMe2)2]ClO4 (8), respectively. Complex 7 was oxidized with PhICl2 to give [AuCl3(NH=CMe2)] (9). The reaction of [AuCl(tht)] (tht = tetrahydrothiophene), NaClO4, and ammonia in acetone gave [Au(acetonine)2]ClO4 (10) (acetonine = 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) which reacted with PPh3 or with PPN[AuCl2] to give [Au(PPh3)(acetonine)]ClO4 (11) or [AuCl(acetonine)] (12), respectively. Complex 11 reacts with [Au(PPh3)(Me2CO)]ClO4 to give [(AuPPh3)2(mu-acetonine)](ClO4)2 (13). The reaction of AgClO4 with acetonine gave [Ag(acetonine)(OClO3)] (14). The crystal structures of [Au(NH2Ar)(PPh3)]OTf (5), 6' and 10 have been determined.  相似文献   

13.
The complexes [Pd(eta2-dmfu)(P-N)] [P-N = 2-(PPh2)C6H4-1-CH=NR, R = C(6)H(4)OMe-4; CHMe2; C6H3Me2-2,6; C6H3(CHMe2)-2,6] react with an excess of BrC6H4R1-4 (R1= CF3; Me) yielding the oxidative addition products [PdBr(C6H4R1-4)(P-N)] at different rates depending on R [C6H4OMe-4 > C6H3(CHMe2)-2,6 > CHMe2 approximately C6H3Me2-2,6] and R1 (CF3> Me). In the presence of K2CO3 and activated olefins (ol = dmfu, fn), the latter compounds react with an excess of 4-R2C6H4B(OH)2 (R2= H, Me, OMe, Cl) to give [Pd(eta2-ol)(P-N)] and the corresponding biaryl through transmetallation and fast reductive elimination. The transmetallation proceeds via a palladium(II) intermediate with an O-bonded boron anion, the formation of which is markedly retarded by increasing the bulkiness of R. The intermediate was isolated for R = CHMe2, R1 = CF3 and R2= H. The boron anion is formulated as a diphenylborinate anion associated with phenylboronic acid and/or as a phenylboronate anion associated with diphenylborinic acid. In general, the oxidative addition proceeds at a lower rate than transmetallation and represents the rate-determining-step in the coupling reaction of aryl bromides with arylboronic acids catalyzed by [Pd(eta2-dmfu)(P-N)].  相似文献   

14.
A series of new 1D chain and 2D coordination polymers with cyclotriguaiacylene-type ligands are reported. A zig-zag 1D coordination chain is found in complex [Cd(2)(4ph4py)(NO(3))(3)(H(2)O)(2)(DMA)(2)]·(NO(3))·(DMA)(4), where 4ph4py = tris[4-(4-pyridyl)benzoyl]-cyclotriguaiacylene and DMA = dimethylacetamide, while complex [Zn(4ph4py)(2)(CF(3)COO)(H(2)O)]·(CF(3)COO)(NMP)(7), where NMP = N-methylpyrrolidone, has a doubly bridged coordination chain structure. Complexes [M(3ph3py)(NO(3))(2)]·(NMP)(4) where M = Co or Zn, 3ph3py = tris[3-(3-pyridyl)benzoyl]cyclotriguaiacylene, are isostructural and feature 1D ladder coordination chains. Complexes [Cd(2)(4ph4py)(2)(NO(3))(4)(NMP)]·(NMP)(9)(H(2)O)(4) and [Co(4ph4py)(H(2)O)(2)]·(NO(3))(2)·(DMF)(2), where DMF = dimethylformamide, both have (3,4)-connected 2D coordination polymers with a rare (4(2).6(2))(4.6(2))(2) topology. A 2D coordination polymer with this topology is also found in complex [Co(2)(3ph4py)(2)(NO(3))(H(2)O)(5)]·(NO(3))(3)·(DMF)(9) where 3ph4py = tris[3-(4-pyridyl)benzoyl]cyclotriguaiacylene. All 2D coordination polymer complexes are interpenetrating or polycatenating. [Co(2)(3ph4py)(2)(NO(3))(H(2)O)(5)](3+)polymers form a 2D→3D polycatenation showing self-complementary "hand-shake" interactions between the host-type ligands.  相似文献   

15.
[Rh(Cp)Cl(mu-Cl)](2) (Cp = pentamethylcyclopentadienyl) reacts (i) with [Au(NH=CMe(2))(PPh(3))]ClO(4) (1:2) to give [Rh(Cp)(mu-Cl)(NH=CMe(2))](2)(ClO(4))(2) (1), which in turn reacts with PPh(3) (1:2) to give [Rh(Cp)Cl(NH=CMe(2))(PPh(3))]ClO(4) (2), and (ii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:2 or 1:4) to give [Rh(Cp)Cl(NH=CMe(2))(2)]ClO(4) (3) or [Rh(Cp)(NH=CMe(2))(3)](ClO(4))(2).H(2)O (4.H(2)O), respectively. Complex 3 reacts (i) with XyNC (1:1, Xy = 2,6-dimethylphenyl) to give [Rh(Cp)Cl(NH=CMe(2))(CNXy)]ClO(4) (5), (ii) with Tl(acac) (1:1, acacH = acetylacetone) or with [Au(acac)(PPh(3))] (1:1) to give [Rh(Cp)(acac)(NH=CMe(2))]ClO(4) (6), (iii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:1) to give 4, and (iv) with (PPN)Cl (1:1, PPN = Ph(3)P=N=PPh(3)) to give [Rh(Cp)Cl(imam)]Cl (7.Cl), which contains the imam ligand (N,N-NH=C(Me)CH(2)C(Me)(2)NH(2) = 4-imino-2-methylpentan-2-amino) that results from the intramolecular aldol-type condensation of the two acetimino ligands. The homologous perchlorate salt (7.ClO(4)) can be prepared from 7.Cl and AgClO(4) (1:1), by treating 3 with a catalytic amount of Ph(2)C=NH, in an atmosphere of CO, or by reacting 4with (PPN)Cl (1:1). The reactions of 7.ClO(4) with AgClO(4) and PTo(3) (1:1:1, To = C(6)H(4)Me-4) or XyNC (1:1:1) give [Rh(Cp)(imam)(PTo(3))](ClO(4))(2).H(2)O (8) or [Rh(Cp)(imam)(CNXy)](ClO(4))(2) (9), respectively. The crystal structures of 3 and 7.Cl have been determined.  相似文献   

16.
The chemical interconversions observed for a novel family of trihydroxymethyl ethane (THME-H(3)) ligated Sn(II) compounds have been determined using single-crystal X-ray and (119)Sn NMR experiments. (mu-THME)(2)Sn(3) (1) was isolated from the reaction of 3 equiv of [Sn(NR(2))(2)](2) (R = SiMe(3)) with 4 equiv of THME as a unique trinuclear species capped above and below the plane of Sn atoms by two THME ligands. Upon reaction with "Sn(NR(2))(2)", compound 1 rearranged to yield another novel molecule [(mu-THME)Sn(2)(NR(2))](2) (2). Compound 2 could also be formed directly from the stoichiometric mixture of THME-H(3) and [Sn(NR(2))(2)](2). Further studies revealed that 1 would also rearrange in the presence of Sn(OR)(2) to form [(mu-THME)Sn(2)(mu-OR)](2) [OR = OMe (3), OCH(2)Me (4), OCH(2)CH(Me)CH(2)CH(3) (5), OCH(2)CMe(3) (6, ONep), OC(6)H(5) (7, not structurally characterized), OC(6)H(4)Me-3 (8), OC(6)H(4)Me-2 (9), OC(6)H(3)(Me)(2)-2,6 (10), OC(6)H(3)(CHMe(2))(2)-2,6 (11). Additionally, 3-11 could by synthesized from the reaction of 2 and the appropriate H-OR. (119)Sn solution NMR studies of 2-11, in THF-d(8), indicate that an equilibrium between the parent complex and its disassociation products (1 and the free parent Sn alkoxy or amide precursor) exists at room temperature. This is a likely reason behind the ease of interconversion observed for 1. The generality of this exchange was further verified through the reaction of 1 with [Ti(mu-ONep)(ONep)(3)](2), which led to the isolation of (mu-ONep)(2)Sn(3)(mu-THME)(2)Ti(ONep)(2) (12). For 12, the solid-state structure was maintained in solution with no indication of an equilibrium.  相似文献   

17.
Reactions of [PdCl2(COD)] with 1 equiv. of the iminophosphorane-phosphine ligands Ph2PCH2P{=NP(=O)(OR)2}Ph2 (R=Et, Ph) lead to the novel Pd(II) derivatives cis-[PdCl2(kappa2-(P,N)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)] (R=Et, Ph). Pd-N bond cleavage readily takes place upon treatment of these species with a variety of two-electron donor ligands. By this way, complexes cis-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)(L)] (R=Et, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3; R=Ph, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3) have been synthesized in high yields. The addition of two equivalents of ligands to dichloromethane solutions of [PdCl2(COD)] results in the formation of complexes trans-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)2] (R=Et, Ph), which can be converted into the dicationic species [Pd(Ph2PCH2P{=NP(=O)(OR)2}Ph2)2][SbF6]2 (R=Et, Ph) by treatment with AgSbF6. Complex also reacts with CNtBu to afford trans-[Pd(kappa1(P)-Ph2PCH2P{=NP(=O)(OPh)2}Ph2)2(CNtBu)2][SbF6]2. The structures of and have been determined by single-crystal X-ray diffraction methods. In addition, the ability of these Pd(II) complexes to promote the catalytic cycloisomerization of (Z)-3-methylpent-2-en-4-yn-1-ol into 2,3-dimethylfuran has also been studied.  相似文献   

18.
Lithium aluminates Li[Al(O-2,6-Me(2)C(6)H(3))R'(3)] (R' = Et, Ph) react with the μ(3)-alkylidyne oxoderivative ligands [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] to afford the aluminum-lithium-titanium cubane complexes [{R'(3)Al(μ-O-2,6-Me(2)C(6)H(3))Li}(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CR)] [R = H, R' = Et (5), Ph (7); R = Me, R' = Et (6), Ph (8)]. Complex 7 evolves with the formation of a lithium dicubane species and a Li{Al(μ-O-2,6-Me(2)C(6)H(3))Ph(3)}(2)] unit.  相似文献   

19.
In combination with EtAlCl(2) (Mo : Al = 1 : 15) the imido complexes [MoCl(2)(NR)(NR')(dme)] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (1); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (3); R = R' = Bu(t) (4); dme = 1,2-dimethoxyethane) and [Mo(NHBu(t))(2)(NR)(2)] (R = 2,6-Pr(i)(2)-C(6)H(3) (5); R = Bu(t) (6)) each show moderate TON, activity, and selectivity for the catalytic dimerisation of ethylene, which is influenced by the nature of the imido substituents. In contrast, the productivity of [MoCl(2)(NPh)(2)(dme)] (2) is low and polymerisation is favoured over dimerisation. Catalysis initiated by complexes 1-4 in combination with MeAlCl(2) (Mo : Al = 1 : 15) exhibits a significantly lower productivity. Reaction of complex 5 with EtAlCl(2) (2 equiv.) gives rise to a mixture of products, while addition of MeAlCl(2) affords [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. Treatment of 6 with RAlCl(2) (2 equiv.) (R = Me, Et) yields [Mo({μ-N-Bu(t)}AlCl(2))(2)] (7) in both cases. Imido derivatives 1 and 3 react with Me(3)Al and MeAlCl(2) to form the bimetallic complexes [MoMe(2)(N{R}AlMe(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (8); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (10)) and [MoMe(2)(N{R}AlCl(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (9); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (11)), respectively. Exposure of complex 8 to five equivalents of thf or PMe(3) affords the adducts [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)(L)] (L = thf (12); L = PMe(3) (13)), while reaction with NEt(3) (5 equiv.) yields [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. The molecular structures of complexes 5, 9 and 11 have been determined.  相似文献   

20.
The synthesis of the proligands C(5)Me(4)HSiMe(2)N(H)R) (R = CMe(2)Ph 1, 2-C(6)H(4)Ph 2) was accomplished via a straightforward salt metathesis reaction of the appropriate lithium amide and ClSiMe(2)(C(5)Me(5)H). Generation of the dilithio salt and reaction with TiCl(3)·(THF)(3) followed by oxidation gave C(5)Me(4)SiMe(2)N(C(6)H(4)Ph)TiCl(2) (3) in low yield. In contrast, deprotonation of 1 and 2 and reaction with (Me(2)N)(2)TiCl(2) afforded C(5)Me(4)(SiMe(2)NR)Ti(NMe(2))(2) (R = CMe(2)Ph 4, 2-C(6)H(4)Ph 5), respectively, in good yields Treatment with MeI gave the analogs C(5)Me(4)(SiMe(2)NR)TiI(2) (R = CMe(2)Ph 6, 2-C(6)H(4)Ph 7). Reduction of 7 with potassium graphite afforded C(5)Me(4)(SiMe(2)NC(6)H(4)Ph)Ti 8. Treatment of 6 and 7 with MeMgBr afforded C(5)Me(4)(SiMe(2)NR)TiMe(2) (R = CMe(2)Ph 9, 2-C(6)H(4)Ph 10). Complexes 9 and 10 in combination with the activator [Ph(3)C][B(C(6)F(5))(4)] catalyzed the polymerization of styrene and ethylene. Copolymerization was also investigated. While the catalyst derived from 10 showed poor activity, compound 9 showed markedly higher activity than 10 and (C(5)Me(4))SiMe(2)(NtBu)]TiMe(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号