首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initial hydrogen adsorption on the Si(1 1 1) 7 × 7 surface was studied by scanning tunneling microscopy (STM) in an ultrahigh vacuum. Room temperature adsorbed hydrogen on the adatom in the 7 × 7 reconstruction led to depression of adatoms in the STM images. The hydrogen uptake curve at the adatom site as a function of hydrogen exposure time was well represented by Langmuir adsorption. No preferential adsorption was seen among four inequivalent adatoms in the 7 × 7 reconstruction. Adsorption of the adjacent center and corner adatoms respectively showed ∼10% higher adsorption. Even though the number of reacted adatoms in the half unit of the 7 × 7 reconstruction was statistically random, the number of reacted adatoms in the nearest neighbor half unit was enhanced as the number of reacted sites increased in the half unit.  相似文献   

2.
The surface atomic structure of Bi on Au(1 1 1) is studied with scanning tunneling microscopy. At about 0.5 monolayer of Bi, a well-ordered 6 × 6 atomic structure is observed. The structure has three notable features: corner holes, Bi adatoms, and stacking faults, very similar to a semiconductor surface of Si(1 1 1)-7 × 7. Out of 18 Bi surface atoms in a unit cell, six atoms are at hollow sites and are adatoms, and another six atoms are near-bridge sites. The last six atoms surround corner holes and are lower than other surface atoms by about 0.2 Å. A possible atomic model is proposed based on our observation.  相似文献   

3.
We investigated desorption of chlorine atoms on Si (1 1 1)-(7 × 7) surfaces induced by hole injection from scanning tunneling microscope tips. The hole-induced desorption of chlorine atoms had a threshold bias voltage corresponding to the energy position of the S3 surface band originated in Si backbonds. The chlorine atom desorption rate was almost proportional to the square of the tunneling current. We have discussed possible mechanisms that two holes injected into Si surface states get localized at the backbonds of chlorinated Si adatoms, which induces the rupture of Cl-Si bonds to result in chlorine atom desorption.  相似文献   

4.
T.H. Andersen 《Surface science》2009,603(1):84-14495
Adsorption of 1,1-dichloroethene (1,1-DCE) at the Si(1 1 1)-7 × 7 surface has been investigated using scanning tunneling microscopy. 1,1-DCE dissociates upon adsorption by breaking one or both CCl bonds. The appearance of reacted adatoms in the 7 × 7 reconstruction is found to vary for both positive and negative sample bias voltages in the range of 0.8 V to 2.5 V. Dissociated Cl atoms bond to adatom sites and appear bright for bias voltages higher than ±1.4 V. The other dissociated species appear dark for bias voltages below ±1.85 V with a preference of 2:1 for bonding to center relative to corner adatom sites. The faulted half unit cell is preferred. It is demonstrated that rest atoms are active in the dissociation of two-thirds of the 1,1-DCE molecules.  相似文献   

5.
The spontaneous dissociation of trichloroethylene molecules on the Si(1 1 1)7 × 7 surface was investigated using STM. Chlorine atoms were identified by using voltage dependent imaging and by observing voltage dependent tip-induced diffusion. At low coverage, we identify one chlorine that dissociates and binds to an adatom, leaving a nearby chlorovinyl group as the other product bound to the surface. Chlorine atoms show strong site selectivity for corner adatoms and some preference for the faulted half of the unit cell. This result differs significantly from previous studies of chlorine on this surface and a site-selective mobile precursor model is used to explain this discrepancy. The observed site-selectivity is consistent with the high electronegativity value for chlorine.  相似文献   

6.
Jeong-Young Ji 《Surface science》2007,601(7):1768-1774
PH3 adsorption on Si(1 1 1)-7 × 7 was studied after various exposures between 0.3 and 60 L at room temperature by means of scanning tunneling microscopy (STM). PH3-, PH2-, H-reacted, and unreacted adatoms can be identified by analyzing empty-state STM images at different sample biases. PHx-reacted rest-atoms can be observed in empty-state STM images if neighboring adatoms are hydrogen terminated. Most of the PH3 adsorbs dissociatively on the surface, generating H- and PH2-adsorbed rest-atom and adatom sites. Dangling-bonds at rest-atom sites are more reactive than adatom sites and the faulted half of the 7 × 7 unit cell is more reactive than the unfaulted half. Center adatoms are overwhelmingly preferred over corner adatoms for PH2 adsorption. The saturation P coverage is ∼0.18 ML. Annealing of PH3-reacted 7 × 7 surfaces at 900 K generates disordered, partially P-covered surfaces, but dosing PH3 at 900 K forms P/Si(1 1 1)- surfaces. Si deposition at 510 K leaves disordered clusters on the surface, which cannot be reordered by annealing up to 800 K. However, annealing above 900 K recreates P/Si(1 1 1)- surfaces. Surface morphologies formed by sequential rapid thermal annealing are also presented.  相似文献   

7.
We investigate the low-coverage regime of vanadium deposition on the Si(1 1 1)-7 × 7 surface using a combination of scanning tunnelling microscopy (STM) and density-functional theory (DFT) adsorption energy calculations. We theoretically identify the most stable structures in this system: (i) substitutional vanadium atoms at silicon adatom positions; (ii) interstitial vanadium atoms between silicon adatoms and rest atoms; and (iii) interstitial vanadium - silicon adatom vacancy complexes. STM images reveal two simple vanadium-related features near the Si adatom positions: bright spots at both polarities (BB) and dark spots for empty and bright spots for filled states (DB). We relate the BB spots to the interstitial structures and the DB spots to substitutional structures.  相似文献   

8.
This study investigated the dynamics of copper atoms adsorbed on Si(1 1 1)-7 × 7 surfaces between 300 K and 623 K using a variable-temperature scanning tunneling microscope (STM). The diffusion behavior of copper clusters containing up to ∼6 atoms into a particular half unit cell of the 7 × 7 reconstructed Si(1 1 1) surface was considered. The movements and the formation of copper clusters were tracked in detail. The activation energies and pre-exponential factors for various diffusion paths were estimated. Finally, the Cu-etching-Si process and the quasi-5 × 5 incommensurated phase of Cu/Si islands were discussed.  相似文献   

9.
A. Khatiri 《Surface science》2004,549(2):143-148
Exposure of the As-terminated GaAs(0 0 1)-c(4 × 4) reconstructed surface to atomic hydrogen (H) at different substrate temperatures (50-480 °C) has been studied by reflection high-energy electron diffraction (RHEED) and scanning tunnelling microscopy (STM). Hydrogen exposure at low temperatures (∼50 °C) produces a disordered (1 × 1) surface covered with AsHx clusters. At higher temperatures (150-400 °C) exposure to hydrogen leads to the formation of mixed c(2 × 2) and c(4 × 2) surface domains with H adsorbed on surface Ga atoms that are exposed due to the H induced loss of As from the surface. At the highest temperature (480 °C) a disordered (2 × 4) reconstruction is formed due to thermal desorption of As from the surface. The results are consistent with the loss of As from the surface, either through direct thermal desorption or as a result of the desorption of volatile compounds which form after reaction with H.  相似文献   

10.
K. Hayashi  A. Kawasuso 《Surface science》2006,600(19):4426-4429
We have investigated the feature of reflection high-energy positron diffraction (RHEPD) pattern from a Si(1 1 1)-(7 × 7) surface. The RHEPD pattern observed in the total reflection condition is quite different from the conventional reflection high-energy electron diffraction (RHEED) pattern. This fact is attributed to the different penetration depths of positrons and electrons. We show that the intensity distribution of RHEPD pattern is reproduced considering the dimer-adatom-stacking fault (DAS) model with optimized atomic positions and scattering potentials of adatoms and rest atoms.  相似文献   

11.
On metals such as Zr, during hydrogen exposure, dissolution competes with desorption; this competition can be probed by thermal desorption at different heating rates. In the case of desorption from preadsorbed hydrogen, only ∼1% of the hydrogen can be desorbed even at heating rates of >1010 K s−1. Recent measurements of the dynamics of hydrogen released by water dissociation on Zr(0 0 0 1) [G. Bussière, M. Musa, P.R. Norton, K. Griffiths, A.G. Brolo, J.W. Hepburn, J. Chem. Phys. 124 (2006) 124704] have shown that the desorbing hydrogen originates from the recombinative desorption of adsorbed H-atoms and that over 25% of the water collisions lead to hydrogen desorption. To gain further insight into the desorption and dissolution of hydrogen and in an attempt to resolve the paradox of the different desorption yields from H2 vs. H2O exposures, we report new measurements of the laser induced thermal desorption (LITD) of hydrogen from Zr(0 0 0 1) at initial temperatures down to 90 K. The low temperature was chosen because work function measurements suggested that hydrogen adsorbed into only the outermost (surface site) of the two available adsorption sites (surface and subsurface), from which we postulated much more efficient desorption at high heating rates compared to desorption from the sub-surface sites. However, hydrogen desorption by LITD from Zr(0 0 0 1) at 90 K still only accounts for 1% of the adsorbed species, the remainder dissolving into the bulk at LITD heating rates. The different yields alluded to above remain unexplained (Bussière, 2006).  相似文献   

12.
F. Wiame  V. Maurice  P. Marcus 《Surface science》2007,601(5):1193-1204
Several surface analysis techniques were combined to study the initial stages of oxidation of Cu(1 1 1) surfaces exposed to O2 at low pressure (<5 × 10−6 mbar) and room temperature. Scanning tunneling microscopy (STM) results show that the reactivity is governed by the restructuring of the Cu(1 1 1) surface. On the terraces, oxygen dissociative adsorption leads to the formation of isolated O adatoms and clusters weakly bound to the surface. The O adatoms are located in the fcc threefold hollow sites of the unrestructured terraces. Friedel oscillations with an amplitude lower than 5 pm have been measured around the adatoms. At step edges, surface restructuring is initiated and leads to the nucleation and growth of a two-dimensional disordered layer of oxide precursor. The electronic structure of this oxide layer is characterised by a band gap measured by scanning tunneling spectroscopy to be ∼1.5 eV wide. The growth of the oxide islands progresses by consumption of the upper metal terraces to form triangular indents. The extraction of the Cu atoms at this interface generates a preferential orientation of the interface along the close-packed directions of the metal. A second growth front corresponds to the step edges of the oxide islands and progresses above the lower metal terraces. This is where the excess Cu atoms extracted at the first growth front are incorporated. STM shows that the growing disordered oxide layer consists of units of hexagonal structure with a first nearest neighbour distance characteristic of a relaxed Cu-Cu distance (∼0.3 nm), consistent with local Cu2O(1 1 1)-like elements. Exposure at 300 °C is necessary to form an ordered two-dimensional layer of oxide precursor. It forms the so-called “29” superstructure assigned to a periodic distorted Cu2O(1 1 1)-like structure.  相似文献   

13.
Monolayer Ga adsorption on Si surfaces has been studied with the aim of forming p-delta doped nanostructures. Ga surface phases on Si can be nitrided by N2+ ion bombardment to form GaN nanostructures with exotic electron confinement properties for novel optoelectronic devices. In this study, we report the adsorption of Ga in the submonolayer regime on 7 × 7 reconstructed Si(1 1 1) surface at room temperature, under controlled ultrahigh vacuum conditions. We use in-situ Auger electron spectroscopy, electron energy loss spectroscopy and low energy electron diffraction to monitor the growth and determine the properties. We observe that Ga grows in the Stranski-Krastanov growth mode, where islands begin to form on two flat monolayers. The variation in the dangling bond density is observed during the interface evolution by monitoring the Si (LVV) line shape. The Ga adsorbed system is subjected to thermal annealing and the residual thermal desorption studied. The difference in the adsorption kinetics and desorption dynamics on the surface morphology is explained in terms of strain relaxation routes and bonding configurations. Due to the presence of an energetic hierarchy of residence sites of adatoms, site we also plot a 2D phase diagram consisting of several surface phases. Our EELS results show that the electronic properties of the surface phases are unique to their respective structural arrangement.  相似文献   

14.
S. Ogawa 《Surface science》2007,601(18):3838-3842
Ultraviolet photoelectron spectroscopy was used to measure the oxygen uptake, changes in work function due to the surface dipole layer of adsorbed-oxygen atoms, Δ?SDL, and changes in band bending due to the defect-related midgap state, ΔBB, simultaneously during oxidation on Si(0 0 1) surface at room-temperature, RT, under an O2 pressure of 1.3 × 10−5 Pa. The oxygen dosage dependence of Δ?SDL revealed that dissociatively adsorbed-oxygen atoms occupy preferentially dimer backbond sites at the initial stage of Langmuir-type adsorption, which is associated with a rapid increase of ΔBB. When raising temperature to ∼600 °C, such preferential occupation of the dimer backbond sites by oxygen atoms is less significant and ΔBB becomes smaller in magnitude. The observed relation between Δ?SDL and ΔBB indicates that point defects (emitted Si atoms + vacancies) are more frequently generated by oxygen atoms diffusing to the dimer backbond sites at lower temperature in RT −600 °C.  相似文献   

15.
The adsorption of molecular oxygen on the c(2 × 8) reconstruction of quenched Si(1 1 1) surfaces has been studied at the atomic scale using scanning tunneling microscopy (STM) at room temperature (RT). It has been found that clean well reconstructed c(2 × 8) adatoms do not react with O2 molecules but that a limited oxidation can start where adatom sites arranged in reconstructed structures are present. Comparison between O2 adsorption on Si(1 1 1)-c(2 × 8) and Si(1 1 1)-7 × 7 reconstructions coexisting on the same quenched silicon surface has been carried out in detail. For each atomic site present on the surface the variation of reacted sites with exposure has been measured. For low O2 exposures, bright and dark oxygen induced sites appear on the Si(1 1 1)-7 × 7, while Si(1 1 1)-c(2 × 8) does not oxidized at all. At high O2 exposures, large oxidation areas have spread on the 7 × 7 reconstruction, preferentially on the faulted halves of the unit cell, and smaller oxidation areas induced by topological defects have grown all around clean un-reacted c(2 × 8) regions.  相似文献   

16.
M.A.K. Zilani 《Surface science》2007,601(12):2486-2490
We demonstrate the growth of Fe-induced magic clusters on Si(1 1 1)-(7 × 7) template by in situ scanning tunneling microscopy (STM). These clusters form near a dimer row at one side of the half-unit cell (HUC); and with three different equivalent orientations. A cluster model comprising three top layer Si atoms bonded to six Fe atoms at the next layer in the 7 × 7 faulted-half template is proposed. The optimized cluster structure determined by first-principles total-energy calculation shows an inward-shifting of the three center Fe atoms. The clusters and the nearby center-adatoms of the next HUCs appear with a significantly reduced height below bias voltages 0.4 V in high resolution empty-state STM images, suggesting an energy gap opening near the Fermi level at these localized cluster and adatom sites. We explain the stabilization of the clusters on the 7 × 7 template using the gain in electronic energy as the driving force for cluster formation.  相似文献   

17.
The growth of thin K films on Si(1 1 1)-7 × 7 has been investigated by selecting the input and output polarizations of second-harmonic generation (SHG) at room temperature (RT) and at an elevated temperature of 350 °C. The SH intensity at 350 °C showed a monotonic increase with K coverages up to a saturated level, where low energy electron diffraction (LEED) showed a 3 × 1 reconstructed structure. The additional deposition onto the K-saturated surface at 350 °C showed only a marginal change in the SH intensity. These variations are different from the multi-component variations up to 1 ML and orders of magnitude increase due to excitation of plasmons in the multilayers at RT. The variations of SHG during desorption of K at 350 °C showed a two-step decay with a marked shoulder which most likely corresponds to the saturation K coverage of the Si(1 1 1)-3 × 1-K surface. The dominant tensor elements contributing to SHG are also identified for each surface.  相似文献   

18.
Ming-Shu Chen 《Surface science》2007,601(22):5162-5169
The adsorption of K atoms on Cu(0 0 1) has been studied by low-energy electron diffraction (LEED) at room temperature (RT) and 130 K. At RT, a (3 × 2)-p2mg LEED pattern with single-domain was observed at coverage of 0.33, whereas the orthogonal two-domain was found at 130 K. At 130 K, a c(4 × 2) pattern with orthogonal two-domain was observed at coverage 0.25. Both the (3 × 2)-p2mg and c(4 × 2) structures have been determined by a tensor LEED analysis. It is demonstrated that K atoms are adsorbed on surface fourfold hollow sites in the c(4 × 2), while in the (3 × 2) structure two K atoms in the unit cell are located at an asymmetric site with a glide-reflection-symmetry. The asymmetric site is at near the midpoint between the exact hollow site and bridge-site but slightly close to the hollow site. A rumpling of 0.07 Å in the first Cu layer was confirmed, which might stabilize K atoms at the asymmetric site. Surface structures appearing in a coverage range 0.25-0.33 are discussed in terms of the occupation of the asymmetric site with increase of coverage.  相似文献   

19.
The adsorption-desorption behavior of Si adatoms on GaAs(1 1 1)A-(2 × 2) surfaces is investigated using our ab initio-based approach, in which adsorption and desorption behavior of Si adatoms is described by comparing the calculated desorption energy obtained by total-energy electronic-structure calculations with the chemical potential estimated by quantum statistical mechanics. We find that the Si adsorption at the Ga-vacancy site on the (2 × 2) surfaces with As adatoms occurs less than 1140-1590 K while the adsorption without As adatom does less than 630-900 K. The change in adsorption temperature of Si adatoms by As adatoms is due to self-surfactant effects of As adatoms: the promotion of the Si adsorption triggered by As adatoms is found to be interpreted in terms of the band-energy stabilization. Furthermore, the stable temperature range for Si adsorbed surfaces with As adatoms agrees with the experimental results. The obtained results provide a firm theoretical framework to clarify n-type doping processes during GaAs epitaxial growth.  相似文献   

20.
We test the response of the √3 × √3α reconstructions formed by 1/3 monolayer of tin adatoms on silicon and germanium (1 1 1) surfaces upon doping with electrons or holes, using potassium or iodine as probes/perturbers of the initial electronic structures. From detailed synchrotron radiation photoelectron spectroscopy studies we show that doping with either electrons or holes plays a complimentary role on the Si and Ge surfaces and, especially, leads to complete conversion of the Sn 4d two-component spectra into single line shapes. We find that the low binding energy component of the Sn core level for both Si and Ge surfaces corresponds to Sn adatoms with higher electronic charge, than the Sn adatoms that contribute to the core level high binding energy signal. This could be analyzed as Sn adatoms with different valence state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号