首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

2.
K. Ozawa  Y. Oba 《Surface science》2009,603(13):2163-1659
Low-energy electron diffraction, X-ray photoelectron spectroscopy and synchrotron-radiation-excited angle-resolved photoelectron spectroscopy have been used to characterize Cu-oxide overlayers on the Zn-terminated ZnO(0 0 0 1) surface. Deposition of Cu on the ZnO(0 0 0 1)-Zn surface results in the formation of Cu clusters with (1 1 1) top terraces. Oxidation of these clusters by annealing at 650 K in O2 atmosphere (1.3 × 10−4 Pa) leads to an ordered Cu2O overlayer with (1 1 1) orientation. Good crystallinity of the Cu2O(1 1 1) overlayer is proved by energy dispersion of one of Cu2O valence bands. The Cu2O(1 1 1) film exhibits a strong p-type semiconducting nature with the valence band maximum (VBM) of 0.1 eV below the Fermi level. The VBM of ZnO at the Cu2O(1 1 1)/ZnO(0 0 0 1)-Zn interface is estimated to be 2.4 eV, yielding the valence-band offset of 2.3 eV.  相似文献   

3.
V2O3(0 0 0 1) films have been grown epitaxially on Au(1 1 1) and W(1 1 0). Under typical UHV conditions these films are terminated by a layer of vanadyl groups as has been shown previously [A.-C. Dupuis, M. Abu Haija, B. Richter, H. Kuhlenbeck, H.-J. Freund, V2O3(0 0 0 1) on Au(1 1 1) and W(1 1 0): growth, termination and electronic structure, Surf. Sci. 539 (2003) 99]. Electron irradiation may remove the oxygen atoms of this layer. H2O adsorption on the vanadyl terminated surface and on the reduced surface has been studied with thermal desorption spectroscopy (TDS), vibrational spectroscopy (IRAS) and electron spectroscopy (XPS) using light from the BESSY II electron storage ring in Berlin. It is shown that water molecules interact only weakly with the vanadyl terminated surface: water is adsorbed molecularly and desorbs below room temperature. On the reduced surface water partially dissociates and forms a layer of hydroxyl groups which may be detected on the surface up to T ∼ 600 K. Below ∼330 K also co-adsorbed molecular water is detected. The water dissociation products desorb as molecular water which means that they recombine before desorption. No sign of surface re-oxidation could be detected after desorption, indicating that the dissociation products desorb completely.  相似文献   

4.
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface.  相似文献   

5.
We have studied the adsorption structure of acetic anhydride on a TiO2(1 1 0) surface using XPS (X-ray photoelectron spectroscopy), LEED (low energy electron diffraction) and HREELS (high resolution electron energy loss spectroscopy) to determine the origins of the unique adsorption properties of carboxylic acids on a TiO2(1 1 0) surface. The C 1s XPS data indicated that the saturation carbon amount of adsorbed acetic anhydride was 12 ± 3% larger than that of the adsorbed acetic acid. LEED showed p(2 × 1) weak spots for the acetic anhydride adsorbed surface. The HREELS spectra revealed the dissociative adsorption of acetic anhydride. Based on these findings, we concluded that the neutralization of the bridging oxygen atoms associated with the dissociative adsorption is necessary for the stable adsorption of carboxylates on the 5-fold Ti sites.  相似文献   

6.
The adsorption properties of CO on the epitaxial five-monolayer Co/Cu(1 0 0) system, where the Co overlayer has stabilized in the metastable fcc-phase, are reported. This system is known to exhibit metallic quantum well (MQW) states at energies 1 eV or greater above the Fermi level, which may influence CO adsorption. The CO/fcc-Co/Cu(1 0 0) system was explored with low energy electron diffraction (LEED), inverse photoemission (IPE), reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). Upon CO adsorption, a new feature is observed in IPE at 4.4 eV above EF and is interpreted as the CO 2π level. When adsorbed at room temperature, TPD exhibits a CO desorption peak at ∼355 K, while low temperature adsorption reveals additional binding configurations with TPD features at ∼220 K and ∼265 K. These TPD peak temperatures are correlated with different C-O stretch vibrational frequencies observed in the IR spectra. The adsorption properties of this surface are compared to those of the surfaces of single crystal hcp-Co, as well as other metastable thin film systems.  相似文献   

7.
Monolayer Ga adsorption on Si surfaces has been studied with the aim of forming p-delta doped nanostructures. Ga surface phases on Si can be nitrided by N2+ ion bombardment to form GaN nanostructures with exotic electron confinement properties for novel optoelectronic devices. In this study, we report the adsorption of Ga in the submonolayer regime on 7 × 7 reconstructed Si(1 1 1) surface at room temperature, under controlled ultrahigh vacuum conditions. We use in-situ Auger electron spectroscopy, electron energy loss spectroscopy and low energy electron diffraction to monitor the growth and determine the properties. We observe that Ga grows in the Stranski-Krastanov growth mode, where islands begin to form on two flat monolayers. The variation in the dangling bond density is observed during the interface evolution by monitoring the Si (LVV) line shape. The Ga adsorbed system is subjected to thermal annealing and the residual thermal desorption studied. The difference in the adsorption kinetics and desorption dynamics on the surface morphology is explained in terms of strain relaxation routes and bonding configurations. Due to the presence of an energetic hierarchy of residence sites of adatoms, site we also plot a 2D phase diagram consisting of several surface phases. Our EELS results show that the electronic properties of the surface phases are unique to their respective structural arrangement.  相似文献   

8.
The adsorption and reactivity of SO2 on the Ir(1 1 1) and Rh(1 1 1) surfaces were studied by surface science techniques. X-ray photoelectron spectroscopy measurements showed that SO2 was molecularly adsorbed on both the Ir(1 1 1) surface and the Rh(1 1 1) surface at 200 K. Adsorbed SO2 on the Ir(1 1 1) surface disproportionated to atomic sulfur and SO3 at 300 K, whereas adsorbed SO2 on the Rh(1 1 1) surface dissociated to atomic sulfur and oxygen above 250 K. Only atomic sulfur was present on both surfaces above 500 K, but the formation process and structure of the adsorbed atomic sulfur on Ir(1 1 1) were different from those on Rh(1 1 1). On Ir(1 1 1), atomic sulfur reacted with surface oxygen and was completely removed from the surface, whereas on Rh(1 1 1), sulfur did not react with oxygen.  相似文献   

9.
In this work we have performed total-energy calculations on the geometric structure and adsorption properties of Cu(1 0 0) c(2 × 2)/N surface by using the density-functional theory and the projector-augmented wave method. It is concluded that nitrogen atom was adsorbed on a FFH site with a vertical distance of 0.2 Å towards from surface Cu layer. The bond length of the shortest Cu-N bonding is calculated to be 1.83 Å. Geometry optimization calculations exclude out the possibilities of adsorbate induced reconstruction mode suggested by Driver and Woodruff and the atop structural model. The calculated workfunction for this absorbate-adsorbent system is 4.63 eV which is quite close to that of a clean Cu(1 0 0) surface. The total-energy calculations showed that the average adsorption energy per nitrogen in the case of Cu(1 0 0) c(2 × 2)-N is about 4.88 eV with respect to an isolated N atom. The absorption of nitrogen on Cu(1 0 0) surface yields the hybridization between surface Cu atoms and N, and generates the localized surface states at −1.0 eV relative to Fermi energy EF. The stretch mode of the adsorbed nitrogen at FFH site is about 30.8 meV. The present study provides a strong criterion to account for the local surface geometry in Cu(1 0 0) c(2 × 2)/N surface.  相似文献   

10.
The adsorption of NH3 molecule on the Si(1 1 1)-7 × 7 surface modelled with a cluster has been studied using density functional theory (DFT). The results indicate the existence of a precursor state for the non-dissociative chemisorption. The active site for the molecular chemisorption is the adatom; while the NH3 molecule adsorbs on the Si restatom via this preadsorbed state, the adsorption on the Si adatom is produced practically without an energy barrier. The ammonia adsorption on the adatom induces an electron transfer from the dangling bond of this atom to the dangling bond of the adjacent Si restatom, hindering this site for the adsorption of a second NH3 incoming molecule. However, this second molecule links strongly by means of two H-bonds. The dissociative chemisorption process was studied considering one and two ammonia molecules. For the dissociation of a lonely NH3 molecule an energy barrier of ∼0.3 eV was calculated, yielding NH2 on the adatom and H on the restatom. When two molecules are adsorbed, the NH3-NH3 interaction yields the weakening of a N-H bond of the ammonia molecule adsorbed closer the Si surface. As a consequence, the dissociation barrier practically disappears. Thus, the presence of a second NH3 molecule at the adatom-restatom pair of the Si(1 1 1)-7 × 7 surface makes the dissociative reaction self-assisted, the total adsorption process elapsing with a negligible activation barrier (less than 0.01 eV).  相似文献   

11.
The adsorption and dissociation of O2 on CuCl(1 1 1) surface have been systematically studied by the density functional theory (DFT) slab calculations. Different kinds of possible modes of atomic O and molecular O2 adsorbed on CuCl(1 1 1) surface and possible dissociation pathways are identified, and the optimized geometry, adsorption energy, vibrational frequency and Mulliken charge are obtained. The calculated results show that the favorable adsorption occurs at hollow site for O atom, and molecular O2 lying flatly on the surface with one O atom binding with top Cu atom is the most stable adsorption configuration. The O-O stretching vibrational frequencies are significantly red-shifted, and the charges transferred from CuCl to oxygen. Upon O2 adsorption, the oxygen species adsorbed on CuCl(1 1 1) surface mainly shows the characteristic of the superoxo (O2), which primarily contributes to improving the catalytic activity of CuCl, meanwhile, a small quantity of O2 dissociation into atomic O also occur, which need to overcome very large activation barrier. Our results can provide some microscopic information for the catalytic mechanism of DMC synthesis over CuCl catalyst from oxidative carbonylation of methanol.  相似文献   

12.
Temperature-programmed reaction/desorption, X-ray photoelectron spectroscopy, and reflection-absorption infrared spectroscopy have been employed to investigate the reactions of ICH2CH2OH on Cu(1 0 0) under ultrahigh-vacuum conditions. ICH2CH2OH can dissociate on Cu(1 0 0) at 100 K, forming a -CH2CH2OH surface intermediate. Density functional theory calculations predict that the -CH2CH2OH is most probably adsorbed on atop site. -CH2CH2OH on Cu(1 0 0) further decomposes to yield C2H4 below 270 K. No evidence shows the formation of -CH2CH2O- intermediate in the reactions of ICH2CH2OH on Cu(1 0 0) in contrast to the decomposition of BrCH2CH2OH on Cu(1 0 0) and ICH2CH2OH on Ag(1 1 1) and Ag(1 1 0), exhibiting the effects of carbon-halogen bonds and metal surfaces.  相似文献   

13.
Infrared reflection absorption (IRA) spectra measured for dimethyl ether (DME) adsorbed at 80 K on Cu(1 1 1) and Ag(1 1 1) give IR bands belonging only to the A1 and B2 species, indicating that the adsorbate takes on an orientation in which the C2 axis bisecting the COC bond angle tilts away from the surface normal within the plane perpendicular to the substrates. The DFT method was applied to simulate the IRA spectra, indicating that the tilt angles of DME on Cu(1 1 1) and Ag(1 1 1) are about 50° and 55°, respectively, at submonolayer coverages. The results are in contrast to the case of DME on Cu(1 1 0) and Ag(1 1 0), where the C2 axis is perpendicular to the substrates [T. Kiyohara et al., J. Phys. Chem. A 106 (2002) 3469]. Methyl ethyl ether (MEE) adsorbed at 80 K on Cu(1 1 1) gives IRA bands mainly ascribable to the gauche (G) form, whereas the IRA spectra measured for MEE on Ag(1 1 1) are characterized by the trans (T) form. The rotational isomers are identical with those on Cu(1 1 0) and Ag(1 1 0); i.e., MEE on Cu(1 1 0) takes the G form and the adsorbate on Ag(1 1 0) the T form [T. Kiyohara et al., J. Phys. Chem. B 107 (2003) 5008]. The simulation of the IRA spectra indicated that (i) the G form adsorbate on Cu(1 1 1) takes an orientation, in which the axis bisecting the COC bond angle tilts away from the surface normal by ca. 30° within the plane perpendicular to the surface to make the CH3-CH2 bond almost parallel to the surface, and (ii) the T form adsorbate on Ag(1 1 1) takes an orientation, in which the bisecting axis tilts away by ca. 60° from the surface normal within the perpendicular plane. Comparison of these adsorption structures of MEE on the (1 1 1) substrates with those of MEE on Cu(1 1 0) and Ag(1 1 0) indicates that the structures are mainly determined by a coordination interaction of the oxygen atom to the surface metals and an attractive van der Waals interaction between the ethyl group of MEE and the substrate surfaces. The coordination interaction plays an important role on Cu(1 1 1) and Cu(1 1 0), which makes the adsorbate on the Cu substrates to take the orientations with the bisecting axis near parallel to the surface normal and to assume the G form in order to make the ethyl group parallel to the surface, which is favorable for the van der Waals interaction. In the case of MEE on the Ag substrates the attractive van der Waals interaction plays a dominant role, resulting in the T form which is more favorable for the interaction than the G form.  相似文献   

14.
The orientation of hexafluorobenzene (C6F6) on the Cu(1 1 1) surface has been determined for different coverages with the help of near edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS). The adsorption geometry and the bonding mode of C6F6 differ significantly in comparison to its hydrocarbon analog C6H6. C6F6 is found to adsorb on Cu(1 1 1) with the ring plane parallel to the surface for coverages below 10 ML. Next to the distinct multilayer, bilayer and monolayer phases we also present evidence of sub-monolayer (i.e., 1/2 ML) coverage with different electronic structure. These findings are explained in a phenomenological model based on fluorine’s property as a σ-acceptor and a π-donor and the resulting bond polarization within the molecule, which is stabilized by image-potential screening within the substrate.  相似文献   

15.
Ethylene adsorption was studied by use of DFT/B3LYP with basis set 6-31G(d,p) in Gaussian’03 software. It was found that ethylene has adsorbed molecularly on all clusters with π adsorption mode. Relative energy values were calculated to be −50.86 kcal/mol, −20.48 kcal/mol, −32.44 kcal/mol and −39.27 kcal/mol for Ni13 nanocluster, Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) surface cluster models, respectively. Ethylene adsorption energy is inversely proportional to Ni coordination number when Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) cluster models and Ni13 nanocluster are compared with each other.  相似文献   

16.
The electronic structure of the c(2 × 2)-Si/Cu(0 1 1) surface alloy has been investigated and compared to the structures seen in the three phases of the (√3 × √3)R30°Cu2Si/Cu(1 1 1) system, using LCAO-DFT. The weighted surface energy increase between the alloyed Cu(0 1 1) and Cu(1 1 1) surfaces is 126.7 meV/Si atom. This increase in energy for the (0 1 1) system when compared to the (1 1 1) system is assigned to the transition from a hexagonal to a rectangular local bonding environment for the Si ion cores, with the hexagonal environment being energetically more favorable. The Si 3s state is shown to interact covalently with the Cu 4s and 4p states whereas the Si 3p state, and to a lesser extent the Si 3d state, forms a mixture of covalent and metallic bonds with the Cu states. The Cu 4s and 4p states are shown to be altered by approximately the same amount by both the removal of Cu ion cores and the inclusion of Si ion cores during the alloying of the Cu(0 1 1) surface. However, the Cu 3d states in the surface and second layers of the alloy are shown to be more significantly altered during the alloying process by the removal of Cu ion cores from the surface layer rather than by the addition of Si ion cores. This is compared to the behavior of the Cu 3d states in the surface and second layers of the each phase of the (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloy and consequently the loss of Cu-Cu periodicity during alloying of the Cu(0 1 1) surface is conjectured as the driving force for changes to the Cu 3d states. The accompanying changes to the Cu 4s and 4p states in both the c(2 × 2)-Si/Cu(0 1 1) and (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloys are quantified and compared. The study concludes with a brief quantitative study of changes in the bond order of the Cu-Cu bonds during alloying of both Cu(0 1 1) and Cu(1 1 1) surfaces.  相似文献   

17.
Adsorption of carbon monoxide on Pd(3 1 1) and (2 1 1) stepped surfaces has been investigated by the extended London-Eyring-Polyani-Sato (LEPS) method constructed using a 5-parameter Morse potential. The calculated results show that there exist common characteristics of CO adsorption on the two surfaces. At low coverage, CO occupies threefold hollow site of the (1 1 1) terrace and is tilted with respect to the surface normal. Among the threefold hollow sites on the (1 1 1) terrace, the nearer the site is to the step, the greater is the influence of the step. The twofold bridge site on the (1 0 0) step is also a stable adsorption site at high coverage. Because of the different lengths of the (1 1 1) terraces, the (3 1 1) and (2 1 1) stepped surfaces have different characteristics. A number of new sites are exposed on the boundary regions, including the fourfold hollow site (H4) of the (3 1 1) surface and the fivefold hollow site (H5) of the (2 1 1) surface. At high coverage, CO resides in the H5 site of the (2 1 1) surface, but the H4 site of the (3 1 1) surface is not a stable adsorption site. This study further shows that the on-top site on the (1 0 0) step of Pd(3 1 1) is a stable adsorption site, but the same type of site on Pd(2 1 1) is not.  相似文献   

18.
Feng Gao 《Surface science》2009,603(8):1126-10202
RuO2(1 1 0) was formed on Ru(0 0 0 1) under oxygen-rich reaction conditions at 550 K and high pressures. This phase was also synthesized using pure O2 and high reaction temperatures. Subsequently the RuO2 was subjected to CO oxidation reaction at stoichiometric and net reducing conditions at near-atmospheric pressures. Both in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and post-reaction Auger electron spectroscopy (AES) measurements indicate that RuO2 gradually converts to a surface oxide and then to a chemisorbed oxygen phase. Reaction kinetics shows that the chemisorbed oxygen phase has the highest reactivity due to a smaller CO binding energy to this surface. These results also show that a chemisorbed oxygen phase is the thermodynamically stable phase under stoichiometric and reducing reaction conditions. Under net oxidizing conditions, RuO2 displays high reactivity at relatively low temperatures (?450 K). We propose that this high reactivity involves a very reactive surface oxygen species, possibly a weakly bound, atomic oxygen or an active molecular O2 species. RuO2 deactivates gradually under oxidizing reaction conditions. Post-reaction AES measurements reveal that this deactivation is caused by a surface carbonaceous species, most likely carbonate, that dissociates above 500 K.  相似文献   

19.
We have performed an angle resolved photoemission spectroscopy with high energy and high momentum resolutions and have observed the k dependent energy dispersion curves of the striped Cu(1 1 0)(2 × 1)O surface. It is found that the Shockley surface state electron is confined in the clean surface along the perpendicular direction to the stripes and forms a quantum well state (QWS). It has also been clearly observed that an electron of Cu-O antibonding state is confined within the oxygen covered surface.  相似文献   

20.
First-principles calculation on the basis of the density functional theory (DFT) and generalized gradient approximation have been applied to study the adsorption of H2 on the stoichiometric O-terminated Cu2O (1 1 1), Cu2O (1 1 1)-CuCUS and Cu-terminated Cu2O (1 1 1) surfaces. The optimal adsorption position and orientation of H2 on the stoichiometric O-terminated Cu2O (1 1 1) surface and Cu-terminated Cu2O (1 1 1) surface were determined and electronic structural changes upon adsorption were investigated by calculating the Local Density of States (LDOS) of the CuCUS 3d and CuCUS 4s of stoichiometric O-terminated Cu2O (1 1 1) surface. These results showed that H2 molecule adsorption on CuCUS site parallel to stoichiometric O-terminated Cu2O (1 1 1) surface and H2 molecule adsorption on Cu2 site parallel to Cu-terminated Cu2O (1 1 1) surface were the most favored, respectively. The presence of surface copper vacancy has a little influence on the structures when H2 molecule adsorbs on CuCSA, OCUS and OCSA atoms and the H2 molecule is only very weakly bound to the Cu2O (1 1 1)-CuCUS surface. From the analysis of stoichiometric O-terminated Cu2O (1 1 1) Local Density of States, it is observed that CuCUS 3d orbital has moved to a lower energy and the sharp band of CuCUS 4s is delocalized when compared to that before H2 molecule adsorption, and overlapped substantially with bands due to adsorbed H2 molecule. The Mulliken charges of H2 adsorption on CuCUS site showed that H2 molecule obtained electron from CuCUS which was consistent with the calculated electronic structural changes upon H2 adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号