首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Fourier transform IR and Raman spectra of chromate anions isomorphously isolated in potassium, rubidium and cesium sulfate matrices were recorded at room and low temperature (∼100 K). On the basis of the detected second-order vibrational transitions involving the dopant species ν3 mode components, anharmonicity constants and harmonic eigenvalues for these modes were calculated. Despite the fact that, rigorously speaking, the appearance of the spectra of dopant chromate anions may be explained in terms of a Cs site symmetry, the ν3 stretching region resembles an approximate (A1E) splitting (characteristic for a local C3v symmetry). Although such findings may be rationalized in terms of the latent symmetry concept, we propose an alternative explanation, based on the concept of vibrational mode mixing (a ‘Fermi-like’ resonance) of the CrO42−ν1 mode with the ν3a site-group component. We also derive a quantitative model based on the degenerate case stationary perturbation theory that allows an estimation of the relative importance of the latent symmetry versus vibrational mode mixing effects. In the present case, we show that the Fermi-like resonance is predominantly responsible for the observed spectral features.  相似文献   

2.
Hydroxyapatite (HAp) films were deposited by electron cyclotron resonance plasma sputtering under a simultaneous flow of H2O vapor gas. Crystallization during sputter-deposition at elevated temperatures and solid-phase crystallization of amorphous films were compared in terms of film properties. When HAp films were deposited with Ar sputtering gas at temperatures above 460 °C, CaO byproducts precipitated with HAp crystallites. Using Xe instead of Ar resolved the compositional problem, yielding a single HAp phase. Preferentially c-axis-oriented HAp films were obtained at substrate temperatures between 460 and 500 °C and H2O pressures higher than 1×10−2 Pa. The absorption signal of the asymmetric stretching mode of the PO43− unit (ν3) in the Fourier-transform infrared absorption (FT-IR) spectra was the narrowest for films as-crystallized during deposition with Xe, but widest for solid-phase crystallized films. While the symmetric stretching mode of PO43− (ν1) is theoretically IR-inactive, this signal emerged in the FT-IR spectra of solid-phase crystallized films, but was absent for as-crystallized films, indicating superior crystallinity for the latter. The Raman scattering signal corresponding to ν1 PO43− sensitively reflected this crystallinity. The surface hardness of as-crystallized films evaluated by a pencil hardness test was higher than that of solid-phase crystallized films.  相似文献   

3.
By using diamond anvil cell (DAC), high-pressure Raman spectroscopic studies of orthophosphates Ba3(PO4)2 and Sr3(PO4)2 were carried out up to 30.7 and 30.1 GPa, respectively. No pressure-induced phase transition was found in the studies. A methanol:ethanol:water (16:3:1) mixture was used as pressure medium in DAC, which is expected to exhibit nearly hydrostatic behavior up to about 14.4 GPa at room temperature. The behaviors of the phosphate modes in Ba3(PO4)2 and Sr3(PO4)2 below 14.4 GPa were quantitatively analyzed. The Raman shift of all modes increased linearly and continuously with pressure in Ba3(PO4)2 and Sr3(PO4)2. The pressure coefficients of the phosphate modes in Ba3(PO4)2 range from 2.8179 to 3.4186 cm−1 GPa−1 for ν3, 2.9609 cm−1 GPa−1 for ν1, from 0.9855 to 1.8085 cm−1 GPa−1 for ν4, and 1.4330 cm−1 GPa−1 for ν2, and the pressure coefficients of the phosphate modes in Sr3(PO4)2 range from 3.4247 to 4.3765 cm−1 GPa−1 for ν3, 3.7808 cm−1 GPa−1 for ν1, from 1.1005 to 1.9244 cm−1 GPa−1 for ν4, and 1.5647 cm−1 GPa−1 for ν2.  相似文献   

4.
Tunable diode laser (TDL) absorption sensors of water vapor are attractive for temperature, gas composition, velocity, pressure, and mass flux measurements in a variety of practical applications including hydrocarbon-fueled combustion systems. Optimized design of these sensors requires a complete catalog of the assigned transitions with accurate spectroscopic data; our particular interest has been in the 2ν1, 2ν3, and ν1+ν3 bands in the near-IR where telecommunications diode lasers are available. In support of this need, fully resolved absorption spectra of H2O vapor in the spectral range of 6940-7440 cm−1 (1344-1441 nm) have been measured as a function of temperature (296-1000 K) and pressure (1-800 Torr), and quantitative spectroscopic parameters inferred from these spectra compared to published data from Toth, HITRAN 2000 and HITRAN 2004. The peak absorbances were measured for more than 100 strong transitions at 296 and 828 K, and linestrengths determined for 47 strong lines in this region. In addition to reference linestrengths S(296 K), the air-broadening coefficients γair(296 K) and temperature exponents n were inferred for strong transitions in five narrow regions, near 7185.60, 7203.89, 7405.11, 7426.14 and 7435.62 cm−1 that had been targeted as attractive for future diagnostics applications. Most of the measured results, determined within an accuracy of 5%, are found to be in better agreement with HITRAN 2004 than with earlier editions of this database. Large discrepancies (>10%) between measurements and HITRAN 2004 database are identified for some of the probed transitions. These new spectroscopic data for H2O provide a useful test of the sensor design capabilities of HITRAN 2004 for combustion and other applications at elevated temperatures.  相似文献   

5.
Cu(im)6 complexes in Zn(im)6Cl2·4H2O exhibit a strong Jahn-Teller effect which is static below 100 K and the complex in localized in the two low-energy potential wells. We have reinvestigated electron paramagnetic resonance (EPR) spectra in the temperature range 4.2-300 K and determined the deformation directions produced by the Jahn-Teller effect, energy difference 11 cm−1 between the wells and energy 300 cm−1 of the third potential well. The electron spin relaxation was measured by electron spin echo (ESE) method in the temperature range of 4.2-45 K for single crystal and powder samples. The spin-lattice relaxation is dominated by a local mode of vibration with energy 11 cm−1 at low temperatures. We suppose that this mode is due to reorientations (jumps) of the Cu(im)6 complex between the two lowest energy potential wells. At intermediate temperatures (15-35 K), the T1 relaxation is determined by the two-phonon Raman processes in acoustic phonon spectrum with Debye temperature ΘD=167 K, whereas at higher temperatures the relaxation is governed by the optical phonon of energy 266 cm−1. The ESE dephasing is produced by an instantaneous diffusion below 15 K with the temperature-independent phase memory time , then it grows exponentially with temperature with an activation energy of 97 cm−1. This is the energy of the first excited vibronic level. The thermal population of this level leads to a transition from anisotropic to isotropic EPR spectrum observed around 90 K. FT-ESE gives ESEEM spectrum dominated by quadrupole peaks from non-coordinating 14N atom of the imidazole rings and the peak from double quantum transition νdq. We show that the amplitude of the νdq transition can be used to determine the number of non-coordinating nitrogen atoms.  相似文献   

6.
Sintered ceramic powders of calcium-doped lead titanate [Pb1−xCaxTiO3] ceramics with different Ca dopant concentration in the range (x=0-0.35) have been prepared using a sol-gel chemical route. The sol-gel technique is known to offer better purity and homogeneity, and can yield stoichiometric powders with improved properties at relatively lower processing temperature in comparison to conventional solid-state reaction. X-ray diffraction (XRD) and Raman spectroscopy studies have been carried out to identify the crystallographic structure and phase formation. The infrared absorption spectra in the mid-IR region (400-4000 cm−1) show the band corresponding to the Ti-O bond at ∼576 cm−1 and is found to shift to a higher wave number 592 cm−1 with increasing Ca content. The dielectric properties as a function of frequency, and phase transition studies on sintered ceramic Pb0.65Ca0.35TiO3 has been investigated in detail over a wide temperature range 30-600 °C and the results are discussed.  相似文献   

7.
Spectral dependences of refractive and absorption indices n(), k() (=1.2-4.4 eV) and the transversal Kerr effect δ() (=0.5-4.4 eV) in In(Ga)MnAs layers fabricated by laser deposition have been investigated. Spectra of the diagonal and off-diagonal components of the dielectric permittivity tensor of these layers have been calculated. Comparison of the spectral dependences δ(), ε′() and ε2×()2 of the In(Ga)MnAs layers with similar spectra for MnAs has been carried out. Particular features in the spectra of the In(Ga)MnAs layers have been explained by a competition of contributions of the In1−x(Ga1−x)MnxAs host and MnAs inclusions.  相似文献   

8.
The rovibrational spectrum of 2ν9 band of CD3CCH is overlapped by two prominent hot bands identified as (2ν90+ν10±1)(E)←ν10±1(E) and 3ν9±1(E)←ν9±1(E), where ν10 and ν9 are the degenerate CCC and CCH bending fundamental vibrations, respectively. Assignment of lines to the transitions of these hot bands were carried out with the help of the high-resolution spectra recorded at ∼195 K and at room temperature. Molecular parameters for these hot bands have been obtained from the rotational analysis of the partially resolved K-structure lines. Only Q-head of the third hot band , originating from the lower 2ν10 state could be identified.  相似文献   

9.
High-resolution infrared measurements of the OH-stretching mode of oxadisulfane, HSOH, at 3625 cm−1 have been recorded using a Bruker IFS 120 HR Fourier transform spectrometer. More than 1300 lines have been assigned to the ν(OH) fundamental vibration mode, which is a hybrid band showing a c-type perpendicular band and an a-type parallel band spectrum of an asymmetric rotor molecule. The splitting due to the torsional-tunneling has not been observed in this band. The band center position at 3625.59260(20) cm−1 as well as rotational and centrifugal distortion constants for the ν(OH) vibrational excited state have been obtained from a least-squares fit analysis of a semirigid rotor. In addition the αOH experimental vibration-rotation correction terms of the OH-stretching mode have been derived and compared to values used in an earlier semi-empirical calculation of the HSOH structure. All data are in very good agreement with high level ab initio calculations and confirm the assignment of an earlier matrix isolation spectrum at 3608 cm−1 to the ν(OH) fundamental mode.  相似文献   

10.
Structural, dielectric, and ferroelectric properties of a novel high-k ‘Y5V’ (Ba1−xLax)(Ti1−x/4−yCey)O3 ceramics (where x=0.03 and y=0.05, denoted by BL3TC5) with the highest ‘Y5V’ dielectric response (ε′>10 000) among rare-earth-doped BaTiO3 ceramics to date are investigated in detail using SEM, TEM, XRD, DSC, EPR, Raman spectroscopy (RS), temperature and frequency, electric field dependences of dielectric permittivity (ε′), and temperature and electric field dependences of ferroelectric hysteresis loops. The BL3TC5 diffusion of ferroelectric phase transition occurs around dielectric peak temperatures (Tm) near a room temperature characteristic of dielectric thermal relaxation. Powder XRD data and defect complex model were given. “Relaxor” behavior associated with an order/disorder model and formation of a solid solution were discussed. The EPR results provided the evidence of Ti vacancies as compensating for lattice defects. High-k relaxor nature of BL3TC5 is characterized by an average cubic structure with long-range lattice disordering and local polar ordering; a slow change of the ε′ (T) and Pr(T) curves around Tm; no phase transition observed by DSC; and a broad, red-shifted A1 (TO2) Raman phonon mode at 251 cm−1 accompanying the disappearance of the “silent” mode at 305 cm−1 and a clear anti-resonance effect at 126 cm−1 at room temperature.  相似文献   

11.
Raman spectra of Cs2NaTmCl6 have been recorded using a diamond anvil cell at ambient temperature. The vibrational energy of each of the Raman-active TmCl6−3 moiety modes increases linearly with pressure. The integrated band areas of the ν1(a1g) and ν2(eg) modes are independent of applied pressure. However, the band area of the ν5(t2g) mode shows an anomalous behaviour, which has been qualitatively interpreted as due to electron-phonon coupling of the aΓ5 electronic state with the Γ15(t2g) vibronic state. This interaction between the coupled states is strongest between ca. 10 and 13 GPa at ambient temperature. The results serve to emphasize the specificity of the occurrence of strong electron-phonon coupling for particular transitions of a given rare earth ion.  相似文献   

12.
In the present work, mixed magnesium-manganese ferrites of composition Mg0.9Mn0.1Al0.3CozFe1.7−zO4 where z=0.3, 0.5 and 0.7 have been synthesized by the citrate precursor technique. X-ray diffraction patterns of the samples confirmed the formation of single-phase spinel structure. The ferrites have been investigated for their electric and magnetic properties such as dc resistivity, Curie temperature, saturation magnetization, initial permeability and relative loss factor (RLF). Fairly constant value of initial permeability over a wide frequency range (0.1-20 MHz) and low values of the relative loss factor of the order of 10−4-10−5, in the frequency range 0.1-30 MHz, are the cardinal achievements of the present investigation. In addition to this, initial permeability was found to increase with an increase in temperature while RLF was observed to be low at these temperatures. The dc resistivity and Curie temperature were found to increase with an increase in cobalt content. The mechanisms contributing to these results are discussed in detail in this paper.  相似文献   

13.
Metal tungstates (MeWO4, Me = Ba, Sr and Ca) were successfully prepared using the corresponding Me(NO3)2·2H2O and Na2WO4·2H2O in ethylene glycol by the 5 h sonochemical process. The tungstate phases with scheelite structure were detected with X-ray diffraction (XRD) and selected area electron diffraction (SAED). Their calculated lattice parameters are in accord with those of the JCPDS cards. Transmission electron microscopy (TEM) revealed the presence of nanoparticles composing the products. Their average sizes are 42.0 ± 10.4, 18.5 ± 5.1 and 13.1 ± 3.3 nm for Me = Ba, Sr and Ca, respectively. Interplanar spaces of the crystals were also characterized with high-resolution TEM (HRTEM). Their crystallographic planes are aligned in systematic array. Six different vibration wavenumbers were detected using Raman spectrometer and are specified as ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and free rotation. Fourier transform infrared (FTIR) spectra provided the evidence of scheelite structure with W-O anti-symmetric stretching vibration of [WO4]2− tetrahedrons at 786-883 cm−1. Photoluminescence emission of the products was detected over the range of 384-416 nm.  相似文献   

14.
The spectrum of the ν7 band of cis-ethylene-d2 (cis-C2H2D2) has been recorded with an unapodized resolution of 0.0063 cm−1 in the 740-950 cm−1 region using a Bruker IFS 125 HR Fourier transform infrared spectrometer. By fitting 2186 infrared transitions of ν7 with a standard deviation of 0.00060 cm−1 using a Watson’s A-reduced Hamiltonian in the Ir representation, accurate rovibrational constants for ν7 = 1 state have been derived. The band center of ν7 has been found to be 842.20957 ± 0.00004 cm−1. In a simultaneous fit of 1331 infrared ground state combination differences from the present ν7 transitions, together with 22 microwave frequencies, ground state constants have been improved. The rms deviation of the ground state fit was 0.00027 cm−1.  相似文献   

15.
Fourier transform infrared spectra of isotopomeric 35ClO4 and 37ClO4 anions isomorphously isolated in potassium permanganate matrix were recorded at room and low temperature (LT, ∼100 K). On the basis of the detected second-order vibrational transitions involving the dopant species ν3 mode components, anharmonicity constants and harmonic eigenvalues for these modes were calculated. Although the overall appearance of the region of fundamental vibrational transitions in the spectra of dopant perchlorate anions may be better explained in terms of a pseudo-symmetry (the so-called ‘latent’ symmetry) site group C2v, corresponding to the pseudo-symmetry space group Imma, instead of the (rigorous) crystallographic Cs one (corresponding to the crystallographic Pnma space group), an opposite statement seems to be valid for the region of the second-order vibrational transitions. The vibrational mode mixing (a ‘Fermi-like’ resonance) of the ClO4 ν1 mode with the ν3a site group component is almost negligible.  相似文献   

16.
Single crystals of SrFeO3−δ iron(IV) oxides (δ?0.05) have been investigated by selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). The crystals are characterized by a coherent intergrowth of multiple twinned tetragonal and cubic domains. According to Mössbauer spectroscopy and XRD, the cubic domains are the main component, particularly for SrFeO3.00(2). The domain structure transforms significantly when performing HRTEM at room temperature. In a first and very rapid step of transformation the amount of the tetragonal domains increases dramatically. In a subsequent step the sizes of the tetragonal domains are changed via cubic intermediates. All in-situ transformations can be suppressed at low temperature where the typical SAED patterns of the cubic SrFeO3 are observed. It is concluded that low temperature experiments are useful for an unambiguous characterization of the crystal structure and microstructure of high-valent transition metal oxides.  相似文献   

17.
Using a tunable diode-laser spectrometer self-broadening coefficients and absolute intensities have been measured for 26 lines of PH3 at 298 K in the QR branch of the ν2 band and the PP and RP branches of the ν4 band. The recorded lines with J values ranging from 2 to 14 and K from 0 to 11 are located in the spectral range 995-1093 cm−1. Self-broadening coefficients have also been measured at 173.4 K for nine of these lines. The collisional widths and line strengths are obtained by fitting each spectral line with different theoretical profiles. The results obtained for the line intensities are in good agreement with recent measurements [J. Mol. Spectrosc. 215 (2002) 178]. The self-broadening coefficients are also calculated on the basis of a simple semiclassical model involving only the electrostatic interactions. A satisfactory agreement is obtained except for high J values or K values equal to J, for which the calculated results are notably underestimated. By comparing broadening coefficients at room and low temperatures, the temperature dependence of these broadenings has been determined both experimentally and theoretically.  相似文献   

18.
Over 8000 line positions and intensities of phosphine (PH3) at 3 μm have been measured at 0.0115 cm−1 resolution with the McMath-Pierce Fourier Transform spectrometer at Kitt Peak. The observed line intensities ranged from 4.13 × 10−6 to 4.69 × 10−2 cm−2 atm−1 at 296 K, for line positions between 2724.477 and 3601.652 cm−1. This region spans eight interacting vibrational states: 3ν2 (2940.8 cm−1), 2ν2 + ν4 (3085.6 cm−1), ν2 + 2ν4 (3214.9 cm−1), ν1 + ν2 (3307.6 cm−1), ν2 + ν3 (3310.5 cm−1), 3ν4 (∼3345 cm−1), ν1 + ν4 (3426.9 cm−1), and ν3 + ν4 (3432.9 cm−1). Assignments have been determined for all the bands except 3ν4 (a weak band in a highly congested area) for a total of 4232 transitions. The total integrated intensity for this region is 5.70 cm−2 atm−1 near 296 K, and assigned lines account for 79% of the observed absorption. The two strongest bands in the region are ν1 + ν4 and ν3 + ν4 with band strengths at 296 K of 1.61 and 2.01 cm−2 atm−1, respectively. An empirical database of PH3 line parameters (positions, intensities, and assignments) is now available. Lower state energies (corresponding to assignments from this study) and line widths from the literature are included; default values are used for unassigned features.  相似文献   

19.
A simple hydrothermal method has been employed to prepare a series of lanthanide stannate pyrochlores Ln2Sn2O7 (Ln=Y, La, Pr-Yb) at a relatively low temperature of less than 200 °C successfully. On the basis of structural characterizations by X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) absorption spectroscopy and Raman spectroscopy, it was found that the positions of bands in vibrational spectra are sensitive to the ionic radius of Ln3+, and the linear relationship can be seen between the frequency of Sn-O stretching mode and the lanthanide ionic radius in IR spectrum, as well as the frequency of O-Sn-O bending mode and the lanthanide ionic radius in Raman spectrum.  相似文献   

20.
Middle infrared absorption, Raman scattering and proton magnetic resonance relaxation measurements were performed for [Zn(NH3)4](BF4) in order to establish relationship between the observed phase transitions and reorientational motions of the NH3 ligands and BF4 anions. The temperature dependence of spin-lattice relaxation time (T1(1H)) and of the full width at half maximum (FWHM) of the bands connected with ρr(NH3), ν2(BF4) and ν4(BF4) modes in the infrared and in the Raman spectra have shown that in the high temperature phase of [Zn(NH3)4](BF4)2 all molecular groups perform the following stochastic reorientational motions: fast (τR≈10−12 s) 120° flips of NH3 ligands about three-fold axis, fast isotropic reorientation of BF4 anions and slow (τR≈10−4 s) isotropic reorientation (“tumbling”) of the whole [Zn(NH3)4]2+ cation. Mean values of the activation energies for uniaxial reorientation of NH3 and isotropic reorientation of BF4 at phases I and II are ca. 3 kJ mol−1 and ca. 5 kJ mol−1, respectively. At phases III and IV the activation energies values for uniaxial reorientation of both NH3 and of BF4 equal to ca. 7 kJ mol−1. Nearly the same values of the activation energies, as well as of the reorientational correlation times, at phases III and IV well explain existence of the coupling between reorientational motions of NH3 and BF4. Splitting some of the infrared bands at TC2=117 K suggests reducing of crystal symmetry at this phase transition. Sudden narrowing of the bands connected with ν2(BF4), ν4(BF4) and ρr(NH3) modes at TC3=101 K implies slowing down (τR?10−10 s) of the fast uniaxial reorientational motions of the BF4 anions and NH3 ligands at this phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号