首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

2.
J. Wang 《Surface science》2006,600(21):4855-4859
Presented are thermal desorption spectroscopy (TDS) and adsorption probability measurements of iso-butane on the Zn-terminated surface of ZnO. The initial adsorption probability, S0, decreases linearly from 0.57 to 0.22 (±0.02) with impact energy, Ei = 0.74-1.92 eV, and is independent of adsorption temperature, Ts = 91-114 K (±5 K), indicating non-activated molecular adsorption. The coverage, Θ, dependent adsorption probabilities, S(Θ), show a cross-over from adsorbate-assisted adsorption (S increases with Θ) to Kisliuk-like dynamics at about the desorption temperature of iso-butane bi-layers (∼110 K). Thus, the adsorption dynamics are precursor-mediated. The enhanced (gas-surface) mass-match, caused by forming a second layer of the alkane, leads to adsorbate-assisted adsorption. A direct fitting procedure of the TDS data yields a pre-exponential factor of 2.5 × 1013/s and a coverage dependent heat of adsorption of Ed(Θ) = 39 − 6 ∗ Θ + 2.5 ∗ exp(−Θ/0.07) kJ/mol.  相似文献   

3.
E. Kadossov 《Surface science》2007,601(16):3421-3425
The adsorption of n-butane and iso-butane on HOPG (highly-oriented pyrolitic graphite) has been studied by molecular beam scattering. The initial adsorption probability, S0, decreases with impact energy, Ei, and is independent of surface temperature, Ts, i.e., molecular adsorption is present. The adsorption probability, S, increases with coverage, Θ, which is most distinct at large Ei and low Ts. Thus, precursor mediated adsorption is concluded. Whereas S0 of the linear alkane is larger than the one of the branched alkane, consistent with their molecular structure, the shapes of S(Θ) curves are approximately identical. The rotational excitation of the molecules appears to affect S0 for n-butane but not for iso-butane. Monte Carlo simulations (MCS) have been conducted to extract dynamics parameters from the S(Θ) curves.  相似文献   

4.
Adsorption probability measurements (molecular beam scattering) have been conducted to examine the adsorption dynamics (i.e. the gas-surface energy transfer processes) of CO2 adsorption on the Zn-on-Cu(1 1 0) bimetallic system. The results indicate surface alloy formation, which is in agreement with prior studies. Depositing Zn at 300 K on Cu(1 1 0), above the condensation temperature of CO2, leads to a “blocking” of CO2 adsorption sites by Zn which is incorporated in the Cu(1 1 0) surface. This apparent site blocking effect indicates a lowering of the CO2 binding energy on the alloyed surface as compared with the clean Cu(1 1 0) support. The Zn coverage has been calibrated by Auger electron spectroscopy and thermal desorption spectroscopy.  相似文献   

5.
Results of step fluctuation experiments for Mo(0 1 1), using low-energy electron microscopy, are re-examined using recently developed procedures that offer accurate coefficients of surface mass diffusion. By these means, surface diffusion Ds is documented at T/Tm ∼ 0.5, while the crossover to relaxation driven by bulk vacancy diffusion is inferred for T/Tm ∼ 0.6. Here, Tm is the melting temperature Tm = 2896 K. We obtain Ds = 4 × 10−4 exp(−1.13 eV/kBT) cm2/s for the temperature interval 1080-1680 K. Possible indications of diffusion along step edges appear for T/Tm ∼ 0.4. The same measurements of step fluctuation amplitudes determine also the step stiffness, which by symmetry is anisotropic on Mo(0 1 1). It is shown that three independent procedures yield mutually consistent step stiffness anisotropies. These are (1) step fluctuation amplitudes; (2) step relaxation rate anisotropies; and (3) the observed anisotropies of islands in equilibrium on the Mo(0 1 1) surface. The magnitude of the step stiffness obtained from step edge relaxation is consistent with earlier measurements that determine diffusion from grain boundary grooving.  相似文献   

6.
We investigated the adsorption of a 6-dimers Si(1 0 0)2 × 1 surface as a function of coverage and adsorption type (molecular/dissociative) by first principle calculations. In particular, we performed calculations on models with 2, 3, 4 and 6 phenol molecules, corresponding to coverage Θ = 0.34, 0.5, 0.67 and 1. We found that total adsorption energy, when at least one phenol is in a molecular state is lower than the sum of the corresponding singly adsorbed molecules. The dissociative adsorption of multiple molecules, both in parallel and switched configuration is most favoured for a coverage Θ = 0.34 (2.6 eV per adsorbed molecule). This values decreases to 2.0 eV and remains constant till the coverage 1 is reached.The energy barrier for the molecular-to-dissociated transition of a phenol molecule, in presence of another dissociatively adsorbed molecule is ∼0.008 eV and it is similar to the value in case of single adsorption. Possible hydrogen displacements were also considered.  相似文献   

7.
V2O3(0 0 0 1) films have been grown epitaxially on Au(1 1 1) and W(1 1 0). Under typical UHV conditions these films are terminated by a layer of vanadyl groups as has been shown previously [A.-C. Dupuis, M. Abu Haija, B. Richter, H. Kuhlenbeck, H.-J. Freund, V2O3(0 0 0 1) on Au(1 1 1) and W(1 1 0): growth, termination and electronic structure, Surf. Sci. 539 (2003) 99]. Electron irradiation may remove the oxygen atoms of this layer. H2O adsorption on the vanadyl terminated surface and on the reduced surface has been studied with thermal desorption spectroscopy (TDS), vibrational spectroscopy (IRAS) and electron spectroscopy (XPS) using light from the BESSY II electron storage ring in Berlin. It is shown that water molecules interact only weakly with the vanadyl terminated surface: water is adsorbed molecularly and desorbs below room temperature. On the reduced surface water partially dissociates and forms a layer of hydroxyl groups which may be detected on the surface up to T ∼ 600 K. Below ∼330 K also co-adsorbed molecular water is detected. The water dissociation products desorb as molecular water which means that they recombine before desorption. No sign of surface re-oxidation could be detected after desorption, indicating that the dissociation products desorb completely.  相似文献   

8.
Since the development of Scanning Tunnelling Microscopy (STM) technique, considerable attention has been devoted to various molecules adsorbed on various surfaces. Also, a new concept emerged with molecules on surfaces considered as nano machines by themselves. In this context, a thorough knowledge of surfaces and adsorbed molecules at an atomic scale are thus particularly invaluable. The present work describes the first Density Functional Theory (DFT) study of adsorption of CO, CO2 and NO molecules on a BaTiO3 surface following a first preliminary calculation of O and O2 adsorption on the same surface. In the previously considered work, we found that a (0 0 1) surface with BaO termination is more stable than the one with TiO2-termination. Consequently, we extended our study to CO, CO2 and NO molecules adsorbed on a (0 0 1) surface with BaO termination. The present calculation was performed on a (1 × 1) cell with one monolayer of adsorbed molecules. Especially, a series of cases implying CO molecules adsorbed in various geometrical configurations has been examined. The corresponding adsorption energy varies in the range of −0.17 to −0.10 eV. The adsorption energy of a CO2 molecule directly located above an O surface atom (called Os) is of the order of −0.18 eV. The O-C distance length is then 1.24 Å and the O-C-O and O-C-Os angles are 134.0° and 113.0°, respectively. For NO adsorption, the most important induced structural changes are the followings: (i) the N-O bond is broken when a NO molecule is absorbed on a Ba-Os bridge site. In that case, N and O atoms are located above an O and a Ba surface atom, respectively, whereas the O-Ba-Os and N-Os-Ba angles are 106.5° and 63.0°, respectively. The N-O distance is as large as 2.58 Å and the adsorption energy is as much as −2.28 eV. (ii) In the second stable position, the NO molecule has its N atom adsorbed above an Os atom, the N-O axis being tilted toward the Ba atom. The N-Os-Ba angle is then 41.1° while the adsorption energy is only −0.10 eV. At last, the local densities of states around C, O as well as N atoms of the considered adsorbed molecules have also been discussed.  相似文献   

9.
We report first principles calculations to analyze the ruthenium adsorption and diffusion on GaN(0 0 0 1) surface in a 2×2geometry. The calculations were performed using the generalized gradient approximation (GGA) with ultrasoft pseudopotential within the density functional theory (DFT). The surface is modeled using the repeated slabs approach. To study the most favorable ruthenium adsorption model we considered T1, T4 and H3 special sites. We find that the most energetically favorable structure corresponds to the Ru- T4 model or the ruthenium adatom located at the T4 site, while the ruthenium adsorption on top of a gallium atom (T1 position) is totally unfavorable. The ruthenium diffusion on surface shows an energy barrier of 0.612 eV. The resultant reconstruction of the ruthenium adsorption on GaN(0 0 0 1)- 2×2 surface presents a lateral relaxation of some hundredth of Å in the most stable site. The comparison of the density of states and band structure of the GaN(0 0 0 1) surface without ruthenium adatom and with ruthenium adatom is analyzed in detail.  相似文献   

10.
The adsorption of sulfur dioxide molecule (SO2) on Li atom deposited on the surfaces of metal oxide MgO (1 0 0) on both anionic and defect (Fs-center) sites located on various geometrical defects (terrace, edge and corner) has been studied using density functional theory (DFT) in combination with embedded cluster model. The adsorption energy (Eads) of SO2 molecule (S-atom down as well as O-atom down) in different positions on both of O−2 and Fs sites is considered. The spin density (SD) distribution due to the presence of Li atom is discussed. The geometrical optimizations have been done for the additive materials and MgO substrate surfaces (terrace, edge and corner). The oxygen vacancy formation energies have been evaluated for MgO substrate surfaces. The ionization potential (IP) for defect free and defect containing of the MgO surfaces has been calculated. The adsorption properties of SO2 are analyzed in terms of the Eads, the electron donation (basicity), the elongation of S-O bond length and the atomic charges on adsorbed materials. The presence of the Li atom increases the catalytic effect of the anionic O−2 site of MgO substrate surfaces (converted from physisorption to chemisorption). On the other hand, the presence of the Li atom decreases the catalytic effect of the Fs-site of MgO substrate surfaces. Generally, the SO2 molecule is strongly adsorbed (chemisorption) on the MgO substrate surfaces containing Fs-center.  相似文献   

11.
In response to recent helium atom scattering (HAS) and neutron scattering results, Monte Carlo simulations and perturbation theory calculations have been performed for D2 on MgO(0 0 1). Monte Carlo simulations predict that D2 molecules form a series of interesting structures, p(2 × 2) → p(4 × 2) → p(6 × 2), with coverages Θ = 0.5, 0.75, 0.83 respectively, and followed by a formation of a top layer of p(6 × 2) unit cell symmetry. The three types of mono-layers are stable up to 13 K, whereas the top layer still exists up to 10 K. This is in partial agreement with the neutron scattering and HAS results that report c(2 × 2), c(4 × 2) and c(6 × 2); they agree in terms of coverage and stability, but disagree in terms of symmetry. A quantum mechanical examination of the D2 molecules’ rotational motion shows the molecular axes are azimuthally delocalized and hence the simulated structures are c-type rather than p-type. These calculations also indicate that ortho-D2 and helicoptering para-D2 prefer cationic sites, while cartwheeling para-D2 prefers anionic sites.  相似文献   

12.
We report the iron isotope effect on a transition temperature (Tc) in an optimally-doped (Ba,K)Fe2As2 (Tc = 38 K) and SmFeAsO1−y (Tc = 54 K) superconductors. In order to obtain the reliable isotope shift in Tc, twin samples with different iron isotope mass are synthesized in the same conditions (simultaneously) under high-pressure. We have found that (Ba,K)Fe2As2 shows an inverse iron isotope effect αFe = −0.18 ± 0.03 while SmFeAsO1−y shows a small iron isotope effect αFe = −0.02 ± 0.01, where the isotope exponent α is defined by Tc  Mα (M is the isotopic mass). The results show that αFe changes in the iron-based superconductors depending on the system. The distinct iron isotope effects imply the exotic coupling mechanism in the iron-based superconductors.  相似文献   

13.
The adsorption properties of CO on the epitaxial five-monolayer Co/Cu(1 0 0) system, where the Co overlayer has stabilized in the metastable fcc-phase, are reported. This system is known to exhibit metallic quantum well (MQW) states at energies 1 eV or greater above the Fermi level, which may influence CO adsorption. The CO/fcc-Co/Cu(1 0 0) system was explored with low energy electron diffraction (LEED), inverse photoemission (IPE), reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). Upon CO adsorption, a new feature is observed in IPE at 4.4 eV above EF and is interpreted as the CO 2π level. When adsorbed at room temperature, TPD exhibits a CO desorption peak at ∼355 K, while low temperature adsorption reveals additional binding configurations with TPD features at ∼220 K and ∼265 K. These TPD peak temperatures are correlated with different C-O stretch vibrational frequencies observed in the IR spectra. The adsorption properties of this surface are compared to those of the surfaces of single crystal hcp-Co, as well as other metastable thin film systems.  相似文献   

14.
We investigated the growth of Fe nanostructured films on c(2 × 2)-N/Cu(1 0 0) surface with Fe K-edge X-ray absorption fine structure (XAFS) in the near edge and in the extended energy region. The high photon flux of the incident X-rays allowed us to perform multishell analysis of the XAFS oscillations for Fe coverage ΘFe < 1 ML. This data analysis yields a detailed investigation of the atom geometry and some insights in the film morphology. At ΘN < 0.5 ML (N saturation coverage) there is absence of contribution to XAFS from N atoms. First shell analysis of linearly polarized XAFS gives Fe-Fe (or Fe-Cu) bond length values varying between R1 = 2.526 ± 0.006 Å at the highest Fe coverage (3 ML ) and R1 = 2.58 ± 0.01 Å at ΘFe = 0.5 ML, ΘN = 0.3 ML, with incidence angle Θ = 35°. These values are different from the case of bcc Fe (R = 2.48 Å), and compatible with fcc Fe (R1 = 2.52 Å) and fcc Cu (R1 = 2.55 Å). At the Fe lowest coverage (ΘFe = 0.5 ML) the dependence of R1 on the incidence angle indicates expansion of the outmost layer. Near edge spectra and multishell analysis can be well reproduced by fcc geometry with high degree of static disorder. At N saturation pre-coverage (ΘN = 0.5 ML) the XAFS analysis has to keep into account the Fe-N bonding. The results suggest two different adsorption sites: one with Fe in a fcc hollow site, surrounded by other metal atoms as nearest neighbours, and one resulting from an exchange with a Cu atom underneath the N layer.  相似文献   

15.
The initial stages of oxidation of the In-rich InAs(0 0 1)-(4 × 2)/c(8 × 2) surface by molecular oxygen (O2) were studied using scanning tunneling microscopy (STM) and density functional theory (DFT). It was shown that the O2 dissociatively chemisorbs along the rows in the [1 1 0] direction on the InAs surface either by displacing the row-edge As atoms or by inserting between In atoms on the rows. The dissociative chemisorption is consistent with being autocatalytic: there is a high tendency to form oxygen chemisorption sites which grow in length along the rows in the [1 1 0] direction at preexisting oxygen chemisorption sites. The most common site size is about 21-24 Å in length at ∼25% ML coverage, representing 2-3 unit cell lengths in the [1 1 0] direction (the length of ∼5-6 In atoms on the row). The autocatalysis was confirmed by modeling the site distribution as non-Poisson. The autocatalysis and the low sticking probability (∼10−4) of O2 on the InAs(0 0 1)-(4 × 2)/c(8 × 2) are consistent with activated dissociative chemisorption. The results show that is it critical to protect the InAs surface from oxygen during subsequent atomic layer deposition (ALD) or molecular beam epitaxy (MBE) oxide growth since oxygen will displace As atoms.  相似文献   

16.
A high resolution (0.0018 cm−1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3%) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 − ν2, ν1, ν1 + ν2 − ν2, ν3, ν2 + ν3 − ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fit together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fit. For the (0 1 0), (1 1 0) and (0 1 1) states, a simple Watson-type Hamiltonian sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (0 2 0), (1 0 0) and (1 0 1) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK = 2 term to model the Fermi interaction between the (0 2 0) and (1 0 0) levels and a ΔK = 3 term to model the Coriolis interaction between the (1 0 0) and (0 0 1) levels. Precise Hamiltonian constants were derived for the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states.  相似文献   

17.
The dissociative adsorption of N2 on W(1 1 0) is studied using classical dynamics on a six-dimensional potential energy surface obtained from density functional theory calculations. Two distinct channels are identified in the dissociation process: a direct one and an indirect one. It is shown that the direct channel is inhibited for low energy molecules (Ei < 400 meV) and low incidence angles. The indirect channel includes long-lasting dynamic trapping of the molecule at the surface before dissociation. The dependence of the sticking coefficient on the initial incidence angle is analyzed. The theoretical results compare well with values measured using molecular beam techniques.  相似文献   

18.
J. Zachariae 《Surface science》2006,600(13):2785-2794
Exploring ways for self-organized structuring of insulating thin films, we investigated the possibility to produce replicas of step trains, given by a vicinal Si(0 0 1)-4°[1 1 0] surface, in layers of crystalline and perfectly lattice-matched Ba0.7Sr0.3O. For this purpose, we carried out high-resolution spot profile analyses in low-energy electron diffraction (SPA-LEED) both on flat Si(0 0 1) and on Si(0 0 1)-4°[1 1 0]. Oxide layers were generated by evaporating the metals in oxygen ambient pressure with the sample at room temperature. Our G(S) analysis of these mixed oxide layers reveals a strong influence of local compositional fluctuations of Sr and Ba ions and their respective scattering phases, which appears as an unphysically large variation of layer distances. Nevertheless, we are able to show that quite smooth and closed oxide films are obtained with an rms roughness of about 1 ML. These Ba0.7Sr0.3O films directly follow the step train of Sr-modified vicinal Si surfaces that form (1 1 3) oriented facets after adsorption of a monolayer of Sr. This proves that self-organized structuring of insulating films can indeed be an effective method.  相似文献   

19.
J.N. Dawoud  D.B. Jack 《Surface science》2007,601(18):3731-3735
In response to recent helium atom scattering (HAS) results, Monte Carlo (MC) simulations and perturbation theory have been performed for H2 on LiF(0 0 1). MC simulations predict that H2 molecules form a series of structures, p(2 × 2), p(8 × 2), p(4 × 2) with coverages Θ = 0.5, 0.625 and 0.75, respectively, that are stable up to 8 K. This is in partial agreement with the HAS results that report c(2 × 2) and c(8 × 2) structures; they agree in terms of coverage and stability, but disagree in terms of symmetry. To reconcile the results of the simulations and experiments, the orientation of the adsorbed H2 molecules was studied using perturbation theory. These calculations show that the adsorbed H2 molecules are azimuthally delocalized and that the structures are c-type rather then p-type. The calculations also indicate that p-H2 and helicoptering o-H2 prefer cationic sites, while cartwheeling o-H2 prefers anionic sites.  相似文献   

20.
P. Mutombo  V. Cháb 《Surface science》2009,603(4):590-596
Density functional theory calculations have been performed to determine the adsorption site of carbon at the Si(1 1 1):As and Si(1 1 1):H surfaces at different coverages. The As- and H-passivated surfaces were simulated by replacing the topmost Si layer by As or by saturating the Si dangling bonds with hydrogen atoms, respectively. Different high symmetry sites were considered. Carbon was placed successively in the fourfold (T4) or threefold coordinated (H3), the ontop (T1) sites or substituted for a Si atom in the S5 position located underneath the Si adatom in the T4 site. We found that the preferred carbon adsorption site depends on the coverage of the passivated surfaces. At low coverages i.e. at 1/16 ML and 1/3 ML, it prefers a distorted T4 position whereas at 1 ML, it occupies an H3 site. This contrasts with the clean surface where the most energetically favored site is the S5 at all coverages. Carbon adsorption induces a significant change in the structural geometry of the surface atoms, leading to a charge re-arrangement in the surface layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号