首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(Ga1−xMnx)N/GaN digital ferromagnetic heterostructures (DFHs) and (Ga1−xMnx)N/GaN grown on GaN buffer layers by using molecular beam epitaxy have been investigated. The photoluminescence (PL) spectra showed band-edge exciton transitions. They also showed peaks corresponding to the neutral donor-bound exciton and the exciton transitions between the conduction band and the Mn acceptor, indicative of the Mn atoms acting as substitution. The magnetization curves as functions of the magnetic field at 5 K indicated that the saturation magnetic moment in the (Ga1−xMnx)N/GaN DFHs decreased with increasing Mn mole fraction and that the saturation magnetic moment and the coercive field in the (Ga1−xMnx)N/GaN DFHs were much larger than those in (Ga1−xMnx)N thin films. These results indicate that the (Ga1−xMnx)N/GaN DFHs hold promise for potential applications in spintronic devices.  相似文献   

2.
The effect of electron-beam irradiation on the magnetic properties of (Ga1−xMnx)As thin films grown on GaAs (100) substrates by using molecular beam epitaxy was investigated. The ferromagnetic transition temperature (Tc) of the annealed (Ga0.933Mn0.067)As thin films was 160 K. The Tc value for the as-grown (Ga0.933Mn0.067)As thin films drastically decreased with increasing electron-beam current. This significant decrease in the Tc value due to electron-beam irradiation originated from the transformation of Mn substituted atoms, which contributed to the ferromagnetism, into Mn interstitials or Mn-related clusters. These results indicate that the magnetic properties of (Ga1−xMnx)As thin films grown on GaAs (100) substrates are significantly affected by electron-beam irradiation.  相似文献   

3.
Multiple stacked self-assembled (In1−xMnx)As quantum-dot (QD) arrays were grown on GaAs (100) substrates by using molecular-beam epitaxy with a goal of producing (In1−xMnx)As QDs with a semiconductor phase and a high ferromagnetic transition temperature (Tc). Atomic force microscopy, magnetic force microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray fluorescence measurements showed that crystalline multiple stacked (In0.84Mn0.16)As with symmetric single-domain particle were formed on GaAs substrates. Near-field scanning optical spectroscopy spectra at 10 K for the (In0.84Mn0.16)As multiple stacked QDs showed that the band-edge exciton transitions were observed. The magnetization curve as a function of the magnetic field at 5 and 300 K indicated that the multiple stacked (In0.84Mn0.16)As QDs were ferromagnetic, and the magnetization curve as a function of the temperature showed that the Tc was as high as 400 K. These results provide important information on the optical and magnetic properties for enhancing the Tc of (In1−xMnx)As-based nanostructures.  相似文献   

4.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

5.
Si1−xMnx diluted magnetic semiconductor (DMS) bulks were formed by using an implantation and annealing method. Energy dispersive X-ray fluorescence, transmission electron microscopy (TEM), and double-crystal rocking X-ray diffraction (DCRXD) measurements showed that the grown materials were Si1−xMnx crystalline bulks. Hall effect measurements showed that annealed Si1−xMnx bulks were p-type semiconductors. The magnetization curve as a function of the magnetic field clearly showed that the ferromagnetism in the annealed Si1−xMnx bulks originated from the interaction between interstitial and substitutional Mn+ ions, which was confirmed by the DCRXD measurements. The magnetization curve as a function of the temperature showed that the ferromagnetic transition temperature was approximately 75 K. The present results can help to improve understanding of the formation mechanism of ferromagnetism in Si1−xMnx DMS bulks.  相似文献   

6.
Polycrystalline Sn1−xMnxO2 (0≤x≤0.05) diluted magnetic semiconductors were prepared by solid-state reaction method and their structural and magnetic properties had been investigated systematically. The three Mn-doped samples (x=0.01, 0.03, 0.05) undergo paramagnetic to ferromagnetic phase transitions upon cooling, but their Curie temperatures are far lower than room temperature. The magnetization cannot be attributed to any identified impurity phase. It is also found that the magnetization increases with increasing Mn doping, while the ratio of the Mn ions contributing to ferromagnetic ordering to the total Mn ions decreases.  相似文献   

7.
We have investigated the temperature and composition dependent photoluminescence (PL) spectra in Ga1−xMnxN layers (where x ≈ 0.1-0.8%) grown on sapphire (0 0 0 1) substrates using the plasma-enhanced molecular beam epitaxy technique. The efficient PL is peaked in the red (1.86 eV), yellow (2.34 eV), and blue (3.29 eV) spectral range. The band-gap energy of the Ga1−xMnxN layers decreased with increasing temperature and manganese composition. The band-gap energy of the Ga1−xMnxN layers was modeled by the Varshni equation and the parameters were determined to be α = 2.3 × 10−4, 2.7 × 10−4, 3.4 × 10−4 eV/K and β = 210, 210, and 230 K for the manganese composition x = 0.1%, 0.2%, and 0.8%, respectively. As the Mn concentration in the Ga1−xMnxN layers increased, the temperature dependence of the band-gap energy was clearly reduced.  相似文献   

8.
We have grown MnxGe1−x films (x=0, 0.06, 0.1) on Si (001) substrates by magnetron cosputtering, and have explored the resulting structural, morphological, electrical and magnetic properties. X-ray diffraction results show there is no secondary phase except Ge in the Mn0.06Ge0.94 film while new phase appears in the Mn0.1Ge0.9 film. Nanocrystals are formed in the Mn0.06Ge0.94 film, determined by field-emission scanning electron microscopy. Hall measurement indicates that the Mn0.06Ge0.94 film is p-type semiconductor and hole carrier concentration is 6.07×1019 cm−3 while the MnxGe1−x films with x=0 has n-type carriers. The field dependence of magnetization was measured using alternating gradient magnetometer, and it has been indicated that the Mn0.06Ge0.94 film is ferromagnetic at room temperature.  相似文献   

9.
Ferromagnetic Ga1−xMnxAs epilayers with Mn mole fraction in the range of x≈2.2-4.4% were grown on semi-insulating (100) GaAs substrates using the molecular beam epitaxy technique. The transport properties of these epilayers were investigated through Hall effect measurements. The measured hole concentration of Ga1−xMnxAs layers varied from 4.4×1019 to 3.4×1019 cm−3 in the range of x≈2.2-4.4% at room temperature. From temperature dependent resisitivity data, the sample with x≈4.4% shows typical behavior for insulator Ga1−xMnxAs and the samples with x≈2.2 and 3.7% show typical behavior for metallic Ga1−xMnxAs. The Hall coefficient for the samples with x≈2.2 and 4.4% was fitted assuming a magnetic susceptibility given by Curie-Weiss law in a paramagnetic region. This model provides good fits to the measured data up to and the Curie temperature Tc was estimated to be 65, 83 K and hole concentration p was estimated to be 5.1×1019, 4.6×1019 cm−3 for the samples with x≈2.2 and 4.4%, respectively, confirming the existence of an anomalous Hall effect for metallic and insulating samples.  相似文献   

10.
Mn-doped GaN films (Ga1−xMnxN) were grown on sapphire (0 0 0 1) using Laser assisted Molecular Beam Epitaxy (LMBE). High-quality nanocrystalline Ga1−xMnxN films with different Mn concentration were then obtained by thermal annealing treatment for 30 min in the ammonia atmosphere. Mn ions were incorporated into the wurtzite structure of the host lattice by substituting the Ga sites with Mn3+ due to the thermal treatment. Mn3+, which is confirmed by XPS analysis, is believed to be the decisive factor in the origin of room-temperature ferromagnetism. The better room-temperature ferromagnetism is given with the higher Mn3+ concentration. The bound magnetic polarons (BMP) theory can be used to prove our room-temperature ferromagnetic properties. The film with the maximum concentration of Mn3+ presents strongest ferromagnetic signal at annealing temperature 950 °C. Higher annealing temperature (such as 1150 °C) is not proper because of the second phase MnxGay formation.  相似文献   

11.
Based on effective-mass approximation, we present a three-dimensional study of the exciton in GaN/AlxGa1−xN vertically coupled quantum dots (QDs) by a variational approach. The strong built-in electric field due to the piezoelectricity and spontaneous polarization is considered. The relationship between exciton states and structural parameters of wurtzite GaN/AlxGa1−xN coupled QDs is studied in detail. Our numerical results show that the strong built-in electric field in the GaN/AlxGa1−xN strained coupled QDs leads to a marked reduction of the effective band gap of GaN QDs. The exciton binding energy, the QD transition energy and the electron-hole recombination rate are reduced if barrier thickness LAlGaN is increased. The sizes of QDs have a significant influence on the exciton state and interband optical transitions in coupled QDs.  相似文献   

12.
The magnetization and electrical resistivity of Mn3−xFexSnC (0.5≤x≤1.3) were measured to investigate the behavior of the complicated magnetic phase transitions and electronic transport properties from 5 to 300 K. The results obtained demonstrate that Fe doping at the Mn sites of Mn3SnC induces a more complicated magnetic phase transition than that in its parent phase Mn3SnC from a paramagnetic (PM) state to a ferrimagnetic (FI) state consisting of antiferromagnetic (AFM) and ferromagnetic (FM) components, while, with the change of Fe-doped content and magnetic field, there is a competition between the AFM component and FM component in the FI state. Both the Curie temperature (TC) and the saturated magnetization Ms increase with increasing x. The FM component region becomes broader with further increasing Fe-doped content x. The external magnetic field easily creates a saturated FM state (and increased TC) when . Fe doping quenches the negative thermal expansion (NTE) behavior from 200 to 250 K reported in Mn3SnC.  相似文献   

13.
Polycrystalline InxGa1−xN thin films were prepared by mixed source modified activated reactive evaporation (MARE) technique. The films were deposited at room temperature on glass substrates without any buffer layer. All the films crystallize in the hexagonal wurtzite structure. The indium concentration calculated from XRD peak shift using Vegard's law was found to be varying from 2% to 92%. The band gap varies from 1.72 eV to 3.2 eV for different indium compositions. The indium rich films have higher refractive indices as compared to the gallium rich films. The near infra-red absorption decreases with gallium incorporation into InN lattice which is mainly due to decrease in the free carrier concentration in the alloy system. This fact is further supported from Hall effect measurements. MARE turns out to be a promising technique to grow InxGa1−xN films over the entire composition range at room temperature.  相似文献   

14.
The magnetic behavior of Ni2+xMn1−xAl alloys around the stoichiometric 2:1:1 composition was investigated with several experimental techniques. The results of low-temperature magnetization measurements indicate that a competition mechanism between ferromagnetism and antiferromagnetism is expected in off-stoichiometric alloys. Although the Curie temperature is strongly dependent on the composition, the saturation magnetization has an unsystematic variation for deviations from the stoichiometric Ni2MnAl alloy. A reentrant-spin-glass behavior is observed below 50 K.  相似文献   

15.
CoxTi1−xO2−δ films have been prepared on Si(001) substrates by sol-gel method. When heat treated in air, CoxTi1−xO2−δ films are non-ferromagnetic at room temperature. However, after further vacuum annealing or hydrogenation, CoxTi1−xO2−δ films show room-temperature ferromagnetism (RTFM). When the vacuum annealed CoxTi1−xO2−δ films are reheated in air, the magnetic moments of the films strongly reduce. After these films are vacuum annealed once again, the magnetic moments are greatly enhanced, confirming the role of vacuum annealing in ferromagnetism of CoxTi1−xO2−δ films. The x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and measurements of magnetization (M) vs temperature (T) fail to detect Co clusters in the vacuum annealed and the hydrogenated CoxTi1−xO2−δ films. Oxygen vacancies are formed in CoxTi1−xO2−δ films after vacuum annealing and hydrogenation, determined by XRD and XPS measurements. These results indicate that oxygen vacancies created by vacuum annealing and hydrogenation play an important role in the generation of RTFM in CoxTi1−xO2−δ films.  相似文献   

16.
The influences of Mn doping on the structural quality of the ZnxMn1−xO:N alloy films have been investigated by XRD. Chemical compositions of the samples (Zn and Mn content) and their valence states were determined by X-ray photoelectron spectrometry (XPS). Hall effect measurements versus temperature for ZnxMn1−xO:N samples have been designed and studied in detail. The ferromagnetic transitions happened at different TC should explain that the magnetic transition in field-cooled magnetization of Zn1−xMnxO:N films at low temperature is caused by the strong p-d exchange interactions besides magnetic transition at 46 K resulting from Mn oxide, and that the room temperature ferromagnetic signatures are attributed to the uncompensated spins at the surface of anti-ferromagnetic nano-crystal of Mn-related Zn(Mn)O.  相似文献   

17.
The magnetic properties of the Ca1−xMnxO systems in the range 0?x?1 have been studied by mean field theory and high-temperature series expansions (HTSEs). By using the first theory, we have evaluated the nearest neighbour and the next-neighbour super-exchange interaction J1(x) and J2(x) respectively, in the range 0.45?x?1. The corresponding classical exchange energy for magnetic structure is obtained for the Ca1−xMnxO systems. The HTSEs combined with the Padé approximants (PA) method is applied to the Ca1−xMnxO systems; we have obtained the magnetic phase diagrams (TN or TSG versus dilution x) in the range 0?x?1. The obtained theoretical results are in agreement with experimental ones obtained by magnetic measurements. The critical exponents associated with the magnetic susceptibility (γ) and the correlation lengths (ν) are deduced in the range 0?x?1.  相似文献   

18.
We report on the optical properties of high-Al-content crack free AlxGa1−xN (x<0.67) films grown by molecular-beam epitaxy on Si(111) substrates using ammonia as nitrogen source. The energetic position of the A free exciton as a function of the Al content is determined from photoluminescence and reflectivity measurements at low temperature. A bowing parameter of b=1 eV is deduced from these measurements. The excitonic linewidth increases as a function of Al concentration. The observed variation agrees very well with the one calculated using a model in which the broadening effect is assumed to be due to alloy compositional disordering.  相似文献   

19.
A series of Ni43Mn46Sn11−xSbx (x=0, 1, and 3) alloys were prepared by an arc melting method. The martensitic transition shifts to higher temperature with the increasing Sb content. The isothermal magnetization curves and Arrott plots around martensitic transition temperatures show a typical metamagnetic behavior. Under a low applied magnetic field of 10 kOe, large magnetic entropy changes around the martensitic transition temperature are 10.4, 8.9, and 7.3 J/kg K, for x=0, 1, and 3, respectively. The origin of the large magnetic entropy changes and potential application for Ni43Mn46Sn11−xSbx alloys as working substances in magnetic refrigeration are discussed.  相似文献   

20.
Ge1−xMnx (x = 0, 0.013, 0.0226, 0.0339, 0.0565, 0.0678, 0.0904, 0.113) films prepared by magnetron sputtering at 773 K had a Ge cubic structure except for x = 0.1130. Co ion implantation into these films can effectively prevent the formation of a second phase. Both single-doped and co-doped samples were ferromagnetic at room temperature. The d-d exchange interaction between the interstitial Mn (MnT) and the substituted Mn (MnGe) resulted in ferromagnetism in the sputtered films. Since Co ion implantation destroyed the MnT-MnGe-MnT complex, the saturated magnetization decreased. Hall measurements revealed that the Co ion implanted films were n-type semiconductors, and the anomalous Hall Effect (AHE) suggested the ferromagnetism was carrier-mediated in the implanted films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号