首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
We have investigated the adsorption mechanism of SiO molecule incident on a clean Si(1 0 0) p(2 × 2) reconstructed surface using density functional theory based methods. Stable adsorption geometries of SiO on Si surface, as well as their corresponding activation and adsorption energies are identified. We found that the SiO molecule is adsorbed on the Si(1 0 0) surface with almost no activation energy. An adsorption configuration where the SiO binds on the channel separating the dimer rows, forming a Si-O-Si bridge on the surface, is the energetically most favourable geometry found. A substantial red-shift in the calculated vibrational frequencies of the adsorbed SiO molecule in the bridging configurations is observed. Comparison of adsorption energies shows that SiO adsorption on a Si(1 0 0) surface is energetically less favourable than the comparable O2 adsorption. However, the role of SiO in the growth of silicon sub-oxides during reactive magnetron plasma deposition is expected to be significant due to the relatively large amount of SiO molecules incident on the deposition surface and its considerable sticking probability. The stable adsorption geometries found here exhibit structural properties similar to the Si/SiO2 interface and may be used for studying SiOx growth.  相似文献   

2.
SiH4 and GeH4 dissociative adsorptions on a buckled SiGe(1 0 0)-2 × 1 surface have been analyzed using density functional theory (DFT) at the B3LYP level. The Ge alloying in the Si(1 0 0)-2 × 1 surface affects the dimer buckling and its surface reactivity. Systematic Ge influences on the reaction energetics are found in SiH4 and GeH4 reactions with four dimers of Si-Si, Ge-Si, Ge-Ge, and Si-Ge (∗ denotes the protruded atom). On a half H-covered surface, the energy barriers for silane and germane adsorption are higher than those on the pristine surface. The energy barrier for silane adsorption is higher than the corresponding barrier for germane adsorption. Rate constants are also calculated using the transition-state theory. We conclude that the SiGe surface reactivity in adsorption reaction depends on the Ge presence in dimer form. If the surface Ge is present in form of Ge-Ge, the surface reactivity decreases as the Ge-Ge content increases. If the surface Ge prefers to be in form of Ge-Si at low Ge contents, the surface reactivity increases first, then decreases at high Ge surface contents when Ge-Ge prevails. The calculated rate constant ratio of GeH4 adsorption on Si-Si over Ge-Ge at 650 °C is 2.1, which agrees with the experimental ratio of GeH4 adsorption probability on Si(1 0 0) over Si(1 0 0) covered by one monolayer Ge. The experimental ratio is 1.7 measured through supersonic molecular beam techniques. This consistency between calculation and experimental results supports that one monolayer of Ge on Si(1 0 0) exists in form of Ge-Ge dimer.  相似文献   

3.
We use first-principles density functional theory-based calculations in the analysis of the interaction of H2O with (1 0 0), (1 1 0) and (1 1 1) surfaces of TiN, and develop understanding in terms of surface energies, polarity of the surface and chemistry of the cation, through comparison with H2O adsorption on ZrN. While water molecule physisorbs preferentially at Ti site of (1 0 0) and (1 1 1) surfaces, it adsorbs dissociatively on (1 1 0) surface of TiN with binding stronger than almost 1.32 eV/molecule. Our analysis reveals the following general trends: (a) surfaces with higher energies typically lead to stronger adsorption, (b) dissociative adsorption of H2O necessarily occurs on a charge neutral high energy surface and (c) lower symmetry of the (1 1 0) plane results in many configurations of comparable stability, as opposed to the higher symmetry (1 0 0) and (1 1 1) surfaces, which also consistently explain the results of H2O adsorption on MgO available in literature. Finally, weaker adsorption of H2O on TiN than on ZrN can be rationalized in terms of greater chemical stability of Ti arising from its ability to be in mixed valence.  相似文献   

4.
Surface X-ray diffraction has been used to investigate the structure of TiO2(1 1 0)(3 × 1)-S. In concert with existing STM and photoemission data it is shown that on formation of a (3 × 1)-S overlayer, sulphur adsorbs in a position bridging 6-fold titanium atoms, and all bridging oxygens are lost. Sulphur adsorption gives rise to significant restructuring of the substrate, detected as deep as the fourth layer of the selvedge. The replacement of a bridging oxygen atom with sulphur gives rise to a significant motion of 6-fold co-ordinated titanium atoms away from the adsorbate, along with a concomitant rumpling of the second substrate layer.  相似文献   

5.
Adsorption of H2 molecule on the Ti (0 0 0 1)-(2 × 1) surface was studied by density functional theory with generalized gradient approximation (GGA). The parallel and vertical absorption cases were investigated in detail by adsorption energy and electronic structure analysis, we obtained three stable configurations of FCC-FCC (the two H atoms adsorption on the two adjacent fcc sites of Ti (0 0 0 1) surface, respectively), HCP-HCP (the two H atoms adsorption on the two adjacent hcp sites of Ti (0 0 0 1) surface, respectively) and FCC-HCP (the one H atom adsorption on the fcc site and the other adsorption on the near hcp site) based on the six different parallel adsorption sites after the H2 molecule dissociates. However, all the end configurations of four vertical adsorption sites were unstable, H2 molecule was very easy to desorb from Ti surface. The H-H bond breaking and Ti-H bond forming result from the H2 molecule dissociation. H-H bond breaking length ranges from 1.9 Å to 2.3 Å for different adsorption configurations due to the strong Ti-H bond forming. The H2 dissociative approach and the end stable configurations formation in parallel adsorption processes are attributed to the quantum mechanics steering effects.  相似文献   

6.
The adsorption energies of intermediates in CO methanation on the modified Ni3Al(1 1 1) surface and the Ni(1 1 1) surface are calculated using density functional theory. A microkinetic analysis based on the calculated adsorption energies is performed to explain the different kinetics of CO methanation catalyzed by Ni3Al and Ni powders. The electronic structures of different atoms on the modified Ni3Al surface are also presented, and correlate well with the adsorption energies and geometries.  相似文献   

7.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

8.
Adsorption of CO molecules and Pb atoms on the Ni(1 1 1) and Ni3Al(1 1 1) substrates is studied theoretically within an ab initio density-functional-theory approach. Stable adsorption sites and the corresponding adsorption energies are first determined for stoichiometric surfaces. The three-fold hollow sites (fcc for Pb and hcp for CO) are found most favourable on both substrates. Next, the effect of surface alloying by a substitution of selected topmost substrate atoms by Pb or Ni atoms on the adsorption characteristics is investigated. When the surface Al atoms of the Ni3Al(1 1 1) substrate are replaced by Ni atoms, the Pb and CO adsorption energies approach those for a pure Ni(1 1 1) substrate. The Pb alloying has a more substantial effect. On the Ni3Al(1 1 1) substrate, it reduces considerably adsorption energy of CO. On the Ni(1 1 1) substrate, CO binding strengthens slightly upon the formation of the Ni(1 1 1)p(2×2)-Pb surface alloy, whereas it weakens drastically when the Ni(1 1 1)-Pb surface alloy is formed.  相似文献   

9.
Adsorption and desorption of methanol on a CeO2(1 1 1)/Cu(1 1 1) thin film surface was investigated by XPS and soft X-ray synchrotron radiation PES. Resonance PES was used to determine the occupancy of the Ce 4f states with high sensitivity. Methanol adsorbed at 110 K formed adsorbate multilayers, which were partially desorbed at 140 K. Low temperature desorption was accompanied by formation of chemisorbed methoxy groups. Methanol strongly reduced cerium oxide by forming hydroxyl groups at first, which with increasing temperature was followed by creation of oxygen vacancies in the topmost cerium oxide layer due to water desorption. Dissociative methanol adsorption and creation of oxygen vacancies was observed as a Ce4+ → Ce3+ transition and an increase of the Ce 4f electronic state occupancy.  相似文献   

10.
Using a first-principles pseudopotential technique, we have investigated the adsorption of CH3OH on the Si(0 0 1) surface. We have found that, in agreement with the overall experimental picture, the most probable chemisorption path for methanol adsorption on silicon (0 0 1) is as follows: the gas phase CH3OH adsorbs molecularly to the electrophilic surface Si atom via the oxygen atom and then dissociates into Si-OCH3 and H, bonded to the electrophilic and nucleophilic surface silicon dimer atoms, respectively. Other possible adsorption models and dissociation paths are also discussed. Our calculations also suggest that the most probable methanol coverage is 0.5 ML, i.e., one molecule per Si-Si dimer, in agreement with experimental evidences. The surface atomic and electronic structures are discussed and compared to available theoretical and experimental data. In addition, we propose that a comparison of our theoretical STM images and calculated vibrational modes for the adsorbed systems with detailed experimental investigations could possibly confirm the presented adsorption picture.  相似文献   

11.
D. Kecik 《Surface science》2009,603(2):304-3199
A first principles study is performed to investigate the adsorption characteristics of hydrogen on magnesium surface. Substitutional and on-surface adsorption energies are calculated for Mg (0 0 0 1) surface alloyed with the selected elements. To further analyze the hydrogen-magnesium interaction, first principles molecular dynamics method is used which simulates the behavior of H2 at the surface. Also, charge density differences of substitutionally doped surface configurations were illustrated. Accordingly, Mo and Ni are among the elements yielding lower adsorption energies, which are found to be −9.2626 and −5.2995 eV for substitutionally alloyed surfaces, respectively. In light of the dynamic calculations, Co as an alloying element is found to have a splitting effect on H2 in 50 fs, where the first hydrogen atom is taken inside the Mg substrate right after the decomposition and the other after 1300 fs. An interesting remark is that, elements which acquire higher chances of adsorption are also seen to be competent at dissociating the hydrogen molecule. Furthermore, charge density distributions support the results of molecular dynamics simulations, by verifying the distinguished effects of most of the 3d and 4d transition metals.  相似文献   

12.
Two different growth modes of manganese silicide are observed on Si(1 0 0) with scanning tunneling microscopy. 1.0 and 1.5 monolayer Mn are deposited at room temperature on the Si(1 0 0)-(2 × 1) substrate. The as-grown Mn film is unstructured. Annealing temperatures between room temperature and 450 °C lead to small unstructured clusters of Mn or MnxSiy. Upon annealing at 450 °C and 480 °C, Mn reacts chemically with the Si substrate and forms silicide islands. The dimer rows of the substrate become visible again. Two distinct island shapes are found and identified as MnSi and Mn5Si3.  相似文献   

13.
To model the adsorption of Au+ cation in aqueous solution on the semiconductor surface, the interactions of Au+ and hydrated Au+ cations with clean Si(1 1 1) surface were investigated by using hybrid density functional theory (B3LYP) and Møller-Plesset second-order perturbation (MP2) methods. Si(1 1 1) surface was described with Si7H11, Si11H17 and Si22H21 clusters. The effect of the basis set superposition error (BSSE) was taken into account by applying the counterpoise correction. The calculated results indicated that the binding energies between hydrated Au+ cations and clean Si(1 1 1) surface are large, suggesting a strong interaction between hydrated Au+ cations and the semiconductor surface. The bonding nature of the chemical adsorption of Au+ to Si surface can be classified as partial covalent as well as ionic bonding. As the number of water molecules increases, the water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Au+ cation. The Au+ cation in aqueous solution will safely attach to the clean Si(1 1 1) surface.  相似文献   

14.
Ethylene adsorption was studied by use of DFT/B3LYP with basis set 6-31G(d,p) in Gaussian’03 software. It was found that ethylene has adsorbed molecularly on all clusters with π adsorption mode. Relative energy values were calculated to be −50.86 kcal/mol, −20.48 kcal/mol, −32.44 kcal/mol and −39.27 kcal/mol for Ni13 nanocluster, Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) surface cluster models, respectively. Ethylene adsorption energy is inversely proportional to Ni coordination number when Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) cluster models and Ni13 nanocluster are compared with each other.  相似文献   

15.
The interactions between endohedrally doped N@C60 molecules and the Si(1 0 0) surface have been explored via ab initio total energy calculations. Configurations which have the cage located upon the dimer row bonded to two dimers (r2) and within the dimer trench bonded to four dimers (t4) have been investigated, as these have previously been found to be the most stable for the C60 molecule. We have investigated the differences between the adsorption of the C60 and N@C60 molecules upon the Si(1 0 0) surface and found that there are only minimal differences. Two interesting cases are the r2g and t4d configurations, as they both exhibit differences that are not present in the other configurations. These subtle differences have been explored in-depth. It is shown that the effects on the endohedral nitrogen atom, due to its placement within the fullerene cage, are small. Bader analysis has been used to explore differences between the C60 and N@C60 molecules.  相似文献   

16.
Density Functional Theory has been used to determine the energetically preferred structures of submonolayer, monolayer, and multilayer Pt films on both ideal terminations of SrTiO3(1 0 0), SrTiO3(1 1 1), and SrTiO3(1 1 0). The strength of the resulting metal/metal oxide interfaces was characterized by the adsorption energy of the film and the film’s work of separation. The two polar surfaces, SrTiO3(1 1 1) and SrTiO3(1 1 0), form significantly stronger interfaces than the non-polar SrTiO3(1 0 0) surface. Approximate criteria were applied to predict the growth mode of Pt on each surface.  相似文献   

17.
We present an ab initio study of methanol interaction with the Si(1 1 1)7 × 7 surface using a Si(1 1 1)4 × 2 model. The study of the methanol dissociation on Si(1 1 1)4 × 2 shows that pair dissociation on adatom-restatom dangling bonds is largely favoured, in agreement with the experimental observations. The “center” type adatom is slightly more reactive than the “corner” type one, although the difference is weak. Similar behaviour is observed in both adatom types. Our results for a direct CH3OH dissociation favouring a basic cleavage (adsorption of OH and CH3 fragments) rather than an acidic one (adsorption of H and OCH3 fragments), we are finally led to take a kinetic effect into consideration to reconcile theory with experiment. We show that the presence of molecular precursor states is possible. Different orientations with respect to the silicon dangling bonds of these molecular precursors are investigated. However, the corresponding energies are very close and, considering their relative energies, it is finally difficult to discriminate between acidic and basic cleavages.  相似文献   

18.
The results of first-principles calculations about the two possible terminations of (0 0 1) surface of SrTiO3 perovskite and adsorption of NO on SrTiO3 (0 0 1) surface were presented. Both surface parameters (atomic structures and electronic configurations) and adsorption parameters (bond, energy and charge) of NO on SrTiO3 (0 0 1) surface, which have never been investigated before as far as we know were investigated using density functional theory calculations with the local-density approximation (DFT-LDA). It was found that the two possible terminations of SrTiO3 (0 0 1) surface have large surface relaxation, which leads to surface polarization and exhibits different reactivity toward the dissociative adsorption of NO. The electronic states of TiO2-terminated surface have larger difference than that of bulk, so it is more favorable for adsorption of NO than SrO-terminated surface.  相似文献   

19.
J. Wang 《Surface science》2006,600(21):4855-4859
Presented are thermal desorption spectroscopy (TDS) and adsorption probability measurements of iso-butane on the Zn-terminated surface of ZnO. The initial adsorption probability, S0, decreases linearly from 0.57 to 0.22 (±0.02) with impact energy, Ei = 0.74-1.92 eV, and is independent of adsorption temperature, Ts = 91-114 K (±5 K), indicating non-activated molecular adsorption. The coverage, Θ, dependent adsorption probabilities, S(Θ), show a cross-over from adsorbate-assisted adsorption (S increases with Θ) to Kisliuk-like dynamics at about the desorption temperature of iso-butane bi-layers (∼110 K). Thus, the adsorption dynamics are precursor-mediated. The enhanced (gas-surface) mass-match, caused by forming a second layer of the alkane, leads to adsorbate-assisted adsorption. A direct fitting procedure of the TDS data yields a pre-exponential factor of 2.5 × 1013/s and a coverage dependent heat of adsorption of Ed(Θ) = 39 − 6 ∗ Θ + 2.5 ∗ exp(−Θ/0.07) kJ/mol.  相似文献   

20.
First-principles calculations were performed to study the properties of O adsorption on Ni3Al (0 0 1), (0 1 1), and (1 1 1) surfaces using the Cambridge serial total package (CASTEP) code. Stable adsorption sites are identified. The atomic and electronic structures and adsorption energies are predicted. The adsorption sites for O on the Ni3Al (0 0 1) surface are at the 2Ni–2Al fourfold hollow site, whereas O prefers to adsorb at the Ni–Al bridge site on (0 1 1) surface and 2Ni–Al threefold hollow site on (1 1 1) surface. It is found that O shows the strongest affinity for Al and the state of O is the most stabilized when O adsorbs on (0 0 1) surface, while the affinity of O for Al on (0 1 1) surface is weaker than (0 0 1) surface, and (1 1 1) surface is the weakest. The stronger O and Al affinity indicates more stable Al2O3 when oxidized. The experiment has shown that the oxidation resistance of single crystal superalloy in different orientations improves in the order of (1 1 1), (0 1 1), and (0 0 1) surface, suggesting that the oxidation in different crystallographic orientations may be related to the affinity of O for Al in the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号