首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The purpose of this study was to assess the effect of chemical shift artifacts and fat suppression between contrast-enhanced T1-weighted fast spin-echo (FSE) sequence with fat suppression and contrast-enhanced T1-weighted fluid attenuated inversion recovery (FLAIR) sequence with fat suppression in magnetic resonance imaging (MRI) of the thoracic spine at 3.0T. Forty patients, who underwent MRI examination, were recruited and analyzed both qualitatively and quantitatively. Due to chemical shift artifacts in the T1-weighted FSE, 14 of the patients were found to be of non-diagnostic value. On the contrary, in 11 of those 14 patients, no chemical shift artifacts were observed in the T1-weighted FLAIR sequence. Regarding the efficiency of fat suppression, both sequences achieved successful fat suppression. Consequently, the use of T1-weighted FLAIR fat suppression after contrast administration sequence seems to eliminate or significantly reduce image quality deterioration stemming from chemical shift artifacts in thoracic spine examinations.  相似文献   

2.
We retrospectively examined MR images in 82 patients to evaluate the usefulness of short inversion time inversion recovery (STIR) in bone marrow imaging at 0.5 and 1.5 T. The study included 56 patients at 1.5 T and 26 patients at 0.5 T with a variety of pathologic bone marrow lesions (principally oncological), and compared the contrast and image quality of STIR imaging with spin-echo short repetition time/echo time (TR/TE), long TR/TE, and gradient-echo sequences. The pulse sequences were adjusted for optimal image quality, contrast, and fat nulling. STIR appears especially useful for the evaluation of red marrow (e.g., spine), where contrast between normal and infiltrated marrow is greater than with either gradient-echo or T1-weighted images. STIR is also extremely sensitive for evaluation of osteomyelitis, including soft tissue extent. In more peripheral (yellow) marrow, T1-weighted images are usually as sensitive as STIR. Limitations of STIR include artifacts, in particular motion artifact that at high field strength necessitates motion compensation. At 0.5 T, however, motion compensation is usually not necessary. Also, because of extreme sensitivity to water content, STIR may overstate the margins of a marrow lesion. With these limitations in mind, STIR is a very effective pulse sequence at both 0.5 and 1.5 T for evaluation of marrow abnormalities.  相似文献   

3.
High density barium sulphate suspension was investigated as an oral contrast on MRI. On 30 consecutive subjects, the stomach (in all cases) and the two first portions of the duodenum (in 21 cases) were filled with the suspension. This oral contrast behaved as a negative contrast, being hypointense on all pulse sequences (spin-echo T1-weighted, spin-echo T2-weighted and STIR). This characteristic is probably due to the low proton density of the suspension (260 +/- 40). Since barium sulphate is inexpensive, harmless and available on all radiologic departments, it is recommendable in MRI studies of the liver and head of the pancreas.  相似文献   

4.
T2-weighted carotid artery images acquired using the turbo spin-echo (TSE) sequence frequently suffer from motion artifacts due to respiration and blood pulsation. The possibility of using HASTE sequence to achieve motion-free carotid images was investigated. The HASTE sequence suffers from severe blurring artifacts due to signal loss in later echoes due to T2 decay. Combining HASTE with parallel acquisition (PHASTE) decreases the number of echoes acquired and thus effectively reduces the blurring artifact caused by T2 relaxation. Further improvement in image sharpness can be achieved by performing T2 decay compensation before reconstructing the PHASTE data. Preliminary results have shown successful suppression of motion artifacts with PHASTE imaging. The image quality was enhanced relative to the original HASTE image, but was still less sharp than a non-motion-corrupted TSE image.  相似文献   

5.
In order to predict the most sensitive MR imaging sequence for detecting liver metastases at 1.5 T, in vivo measurements of T1 and T2 relaxation times and proton density were obtained using multipoint techniques. Based on these measurements, two-dimensional contrast contour plots were constructed demonstrating signal intensity contrast between hepatic lesions and surrounding liver parenchyma for different pulse sequences and pulse timing parameters. The data predict that inversion recovery spin echo (IRSE) imaging should yield the greatest contrast between liver metastases and liver parenchyma at 1.5 T, followed by short tau inversion recovery (STIR) and spin-echo (SE) pulse sequences. T2-weighted SE images provided greater liver/lesion contrast than T1-weighted SE pulse sequences. Calculated T1, T2, and proton density values of the spleen were similar to those of hepatic metastatic lesions, indicating that the signal intensity of the spleen may be used as an internal standard to predict the signal intensity of hepatic metastases on T1- and T2-weighted images at 1.5 T.  相似文献   

6.
The purpose of this study was to quantitatively evaluate in a phantom model the practical impact of alteration of key imaging parameters on image quality and artifacts for the most commonly used fast T(2)-weighted MR sequences. These include fast spin-echo (FSE), single shot fast spin-echo (SSFSE), and spin-echo echo-planar imaging (EPI) pulse sequences. We developed a composite phantom with different T1 and T2 values, which was evaluated while stationary as well as during periodic motion. Experiments involved controlled variations in key parameters including effective TE, TR, echo spacing (ESP), receive bandwidth (BW), echo train length (ETL), and shot number (SN). Quantitative analysis consisted of signal-to-noise ratio (SNR), image nonuniformity, full-width-at-half-maximum (i.e., blurring or geometric distortion) and ghosting ratio. Among the fast T(2)-weighted sequences, EPI was most sensitive to alterations in imaging parameters. Among imaging parameters that we tested, effective TE, ETL, and shot number most prominently affected image quality and artifacts. Short T(2) objects were more sensitive to alterations in imaging parameters in terms of image quality and artifacts. Optimal clinical application of these fast T(2)-weighted imaging pulse sequences requires careful attention to selection of imaging parameters.  相似文献   

7.
Significant artifacts arise in T(1rho)-weighted imaging when nutation angles suffer small deviations from their expected values. These artifacts vary with spin-locking time and amplitude, severely limiting attempts to perform quantitative imaging or measurement of T(1rho) relaxation times. A theoretical model explaining the origin of these artifacts is presented in the context of a T(1rho)-prepared fast spin-echo imaging sequence. Experimentally obtained artifacts are compared to those predicted by theory and related to B(1) inhomogeneity. Finally, a "self-compensating" spin-locking preparatory pulse cluster is presented, in which the second half of the spin-locking pulse is phase-shifted by 180 degrees. Use of this pulse sequence maintains relatively uniform signal intensity despite large variations in flip angle, greatly reducing artifacts in T(1rho)-weighted imaging.  相似文献   

8.
In magnetic resonance imaging (MRI), T(2)(*)-weighted contrast is significantly enhanced by extremely high magnetic field strength, offering broad potential applications. However, the T(2)(*)-weighted image contrast distortion and signal loss artifact arising from discontinuities of magnetic susceptibility within and around the sample are also increased, limiting utilization of high field systems for T(2)(*)-weighted contrast applications. Due to the B(0) dependence of the contrast distortions and signal losses, and the heterogeneity of magnetic susceptibility in biological samples, magnetic susceptibility artifacts worsen dramatically for in vivo microimaging at higher fields. Practical applications of T(2)(*)-sensitive techniques enhanced by higher magnetic fields are therefore challenged. This report shows that magnetic susceptibility artifacts dominate T(2)(*)-weighted image contrast at 14 T, and demonstrates that the GESEPI (gradient echo slice excitation profile imaging) technique effectively reduces or eliminates these artifacts at long TE in the highest field (14 T) currently available for (1)H imaging.  相似文献   

9.
There is considerable similarity between proton density-weighted (PDw) and T2-weighted (T2w) images acquired by dual-contrast fast spin-echo (FSE) sequences. The similarity manifests itself in image space as consistency between the phases of PDw and T2w images and in k-space as correspondence between PDw and T2w k-space data. A method for motion artifact reduction for dual-contrast FSE imaging has been developed. The method uses projection onto convex sets (POCS) formalism and is based on image space phase consistency and the k-space similarity between PDw and T2w images. When coupled with a modified dual-contrast FSE phase encoding scheme the method can yield considerable artifact reduction, as long as less than half of the acquired data is corrupted by motion. The feasibility and efficiency of the developed method were demonstrated using phantom and human MRI data.  相似文献   

10.
Recent research into the non-invasive assessment of hepatic iron concentrations using magnetic resonance imaging has shown that the proton transverse relaxivity (1/T(2)) varies linearly with liver iron concentration. However, the development of an image-based system for the assessment of hepatic iron distribution has been confounded by the presence of motion induced artifacts in the T(2)-weighted images. We report on the development of a single spin-echo imaging methodology that enables the generation of transverse relaxivity maps over the liver. A simple smoothing technique is used to accommodate the image intensity perturbations caused by abdominal motion. The relaxivity maps are consistent with the variation of iron concentration throughout the liver. A Parzen density estimate and histogram of the relaxivity distribution are generated to assist in the visual assessment of the degree and variability of T(2) shortening with liver iron loading. It was found that one or two Gaussian functions could be used to characterize the relaxivity distributions with a small number of parameters. We propose that this methodology may be used in the clinical setting to monitor hepatic iron concentrations in the advent of an accurate transverse relaxivity calibration curve.  相似文献   

11.
We have implemented an MR technique that employs a rapid gradient echo sequence, preceded by magnetization preparation pulses to provide T1- and T2-weighted tissue contrast. With this technique, which can be identified as a member of a new family of pulse sequences, generically named Magnetization Prepared RApid Gradient Echo (MP-RAGE), very short repetition times are used, allowing acquisition times of less than one second and images virtually free of motion-induced artifacts during quiet respiration. Fifteen patients with known liver lesions (metastases, hemangiomas, and cysts) were examined using T1- and T2-weighted 2-dimensional MP-RAGE sequences, and the images were compared with conventional T1- and multi-echo T2-weighted spin-echo (SE) sequences. Signal difference-to-noise ratios (SD/Ns) of the lesions were calculated for all pulse sequences using corresponding axial images and were normalized for voxel volume. The mean normalized SD/Ns of the MP-RAGE sequences were generally comparable to those for the SE sequences. In addition, there were no noticeable respiratory artifacts on the MP-RAGE images whereas these were clearly present on the T2-weighted SE images and to a lesser degree on the T1-weighted SE images. It is concluded that the MP-RAGE technique could become an important method for evaluating the liver for focal disease.  相似文献   

12.
In 1990, Van Den Enden et al. proposed a method for the determination of water droplet size distributions in emulsions using a pulsed-field-gradient nuclear magnetic resonance (PFG-NMR) T1-weighted stimulated-echo technique. This paper describes both the T1-weighted spin-echo sequence, an improved method based on this earlier work, and, the standard PFG spin-echo sequence. These two methods were compared for water self-diffusion coefficient measurement in the fatty protein concentrate sample used as a 'cheese model.' The transversal and longitudinal relaxation parameters T1 and T2 were determined according to the temperature and investigated for each sample; fat-free protein concentrate sample, pure anhydrous milk fat, and fatty protein concentrate sample. The water self-diffusion in fat-free protein concentrate samples followed a linear behavior. Consequently, the water self-diffusion coefficient could be easily characterized for fat-free protein concentrate samples. However, it seemed more complicated to obtain accurate water self-diffusion in fatty protein concentrate samples since the diffusion-attenuation data were fitted by a bi-exponential function. This paper demonstrates that the implementation of the T1-weighted spin-echo sequence, using the different T1 properties of water and fat phases, allows the accurate determination of water self-diffusion coefficient in a food product. To minimize the contribution of the 1H nuclei in the fat phase on the NMR echo signal, the fat protons were selectively eliminated by an additional 180 degrees pulse. This new method reduces the standard errors of diffusion data obtained with a basic spin-echo technique, by a factor of 10. The effectiveness of the use of the T1-weighted spin-echo sequence to perform accurate water self-diffusion coefficients measurement in fatty products is thus demonstrated.  相似文献   

13.
Short TI inversion-recovery (STIR) imaging provides specific advantages over standard spin-echo (SE) MR sequences by producing additive effects of T1 and T2 brightening of pathology and suppression of the signal from surrounding fat. We retrospectively evaluated 12 patients with abnormalities, primarily neoplastic, of the porta hepatis/hepatoduodenal ligament (PH/HdL) with CT and MR imaging, including SE and STIR imaging. Masses on CT were of slightly decreased density compared to liver and seen in contrast to surrounding fat in the PH/HdL region. On MR, T1-weighted images provided comparable anatomic detail to CT, with masses clearly distinguished from surrounding fat due to the low signal intensity of masses as compared to fat. T2-weighted images clearly depicted intrahepatic lesions because of their high signal intensity relative to liver. Increased signal in extrahepatic lesions made them less distinctly seen from surrounding fat. STIR images best demonstrated tumor relative to fat. In six cases, CT was equivalent in demonstrating pathology to the best MR sequence. At least one MR sequence demonstrated pathology better than CT in 6 of 12 cases. In five of these six cases, the STIR sequence was better than CT. Thus, MR, particularly STIR imaging, provides a useful technique in imaging of PH/HdL pathology.  相似文献   

14.
The purpose of the study was to evaluate the feasibility of pure vegetable oil as an MR contrast agent for rectal applications. The hypothesis was that vegetable oil highlights the lumen of the rectum after rectal application as a positive contrast medium and offers additional contrast qualities using fat suppression techniques. Eleven MRI examinations were performed on 11 subjects (five healthy volunteers, all males, mean age 35 yr; and six patients, three males, three females, mean age 49 yr). Peanut oil, 200 ml, was applied rectally. In addition, 0.1 mmol/kg GD-DTPA was administered intravenously to the six patients only. Conventional T1-weighted SE sequences and and T1-weighted SE images with fat suppression were obtained. Criteria for image evaluation were: overall image quality; uniformity of contrast distribution; chemical shift artifact; and delineation of the rectal wall. Side effects were assessed. There were no complaints reported by the 11 subjects. The image quality was sufficient in all studies. In all five of the volunteers and five of the six patients, the distribution of oil was uniform. Chemical shift artifacts did not deteriorate image quality. After rectal application of vegetable oil, the delineation of the rectal wall was sufficient with and without fat suppression techniques. Vegetable oil highlights the lumen of the rectum in MRI studies and offers additional contrast qualities with fat suppression techniques, acting as a positive as well as a negative contrast agent, depending on the chosen sequence.  相似文献   

15.
Gradient-echo imaging of hemorrhage at 1.5 Tesla   总被引:1,自引:0,他引:1  
We report in vitro and in vivo MR studies of hemorrhage using the gradient-echo pulse sequence, FISP (steady state free precession) and FLASH (spoiling of transverse magnetization) at 1.5 Tesla. Phantoms containing methemoglobin, ferromagnetic particles, human serum and blood clot were scanned using both spin-echo and gradient-echo techniques. FLASH signal intensities were more sensitive to methemoglobin concentration than high T1-weighted spin-echo images. FISP showed little change in signal intensity with varying concentrations of methemoglobin and a contrast relationship similar to T2-weighted spin-echo techniques. FISP and FLASH showed intensity changes at lower concentrations of ferromagnetic material than T2-weighted spin-echo sequences. In vitro blood clot was less intense when observed by FISP and FLASH sequences than on the T2-weighted spin-echo sequences. Maximum contrast between clot and other blood components occurred at a flip angle of 45 degrees for FLASH and 60 degrees for FISP. FISP and FLASH scans of patients with hemorrhage demonstrated a marked decrease in signal intensity in the region of blood clot. This decrease was more pronounced with the gradient-echo sequences than with T2-weighted spin-echo images. We conclude that FLASH is useful for detecting methemoglobin and that both FISP and FLASH are useful for evaluating hemorrhage because of their sensitivity to methemoglobin.  相似文献   

16.
The purpose of this investigation was to quantitatively evaluate the practical impact of alteration of key imaging parameters on image quality and artifacts in fast multi-planar gradient echo (GRE) pulse sequences. These include multi-planar GRASS (MPGR) and fast multi-planar spoiled GRASS (FMPSPGR). We developed a composite phantom with different T(1) and T(2) values comprising the range of common biological tissues, which was also subjected to periodic motion in order to evaluate motion effects. Magnetic resonance imaging was performed on a GE Signa 1.5-T system. Experimental variations in key parameters included excitation flip angle (FL), echo time (TE), repetition time (TR), and receive bandwidth (BW). Quantitative analysis consisted of signal-to-noise-ratio (SNR) and contrast (CN), image nonuniformity (NU), full-width-at-half-maximum (FWHM) (i.e., blurring or geometric distortion), and ghosting ratio (GR). We found that flip angle, TE, and TR play particularly critical roles in determining image signal, homogeneity, and ghosting artifact with these sequences. Optimum clinical application of these pulse sequences requires careful attention to these imaging parameters and to their complex interactions.  相似文献   

17.
The effects of motion in two-dimensional Fourier transform imaging (2DFT) are considered. Specific calculations describing the case of periodic motion are presented. The results predict the commonly seen artifact of image replication, sometimes referred to as ghosting. Expressions for both position and amplitude of these ghosts are derived. Simulated examples illustrate the image degradation for pulsatile flow and in plane motion. Several methods of reducing motion artifacts are then suggested. These include: randomization of views, averaging views, matching repeat times to the respiratory period, hybrid imaging, ROPE and COPE. The latter two methods reorder the data acquisition to destroy the coherence of the motion. They do not increase the data acquisition time and promise to be part of the standard approach to remove motion artifacts. The final step in actually recovering ideal resolution can be accomplished by using a model of the motion and a generalized transform inversion technique.  相似文献   

18.
Pediatric oncology patients with large metallic prostheses were imaged with one of two MR imaging techniques: 1) the "tilted view-angle" technique, 2) or a higher readout bandwidth technique. The tilted view-angle method uses an additional gradient in the slice selection direction during readout. The high bandwidth technique increases the readout bandwidth and shortens the echo time (TE). High bandwidth and short echo times were implemented in both T(1)-weighted (T(1)W) turbo spin echo and turbo short tau inversion recovery (STIR) sequences. Both imaging techniques reduced the size of metal-induced image artifacts. The tilted view-angle method reduced the artifact to a greater degree but had inherent shortcomings. The reformatted images were blurred and shifted. The area of interest was often moved outside of the field of view, unless parameters were adjusted on the basis of a pre-scan calculation. The high readout bandwidth, short echo technique required no special preparation and reduced metal artifacts without image blurring. The combination of high-bandwidth, shorter echo turbo STIR and T(1)W turbo spin echo sequences with subtraction of pre- from post-contrast images allowed effective fat suppression without local field inhomogeneity affects. This greatly improved our ability to evaluate suspected disease near metallic implants in pediatric cancer patients.  相似文献   

19.
Most fast-imaging sequences use gradient echoes and a low flip-angle excitation. The low flip angle is used because it gives increased signal when TR less than T1. However, spin-echo sequences are less productive of certain artifacts, among them flow and magnetic susceptibility artifacts. We present a modification of the spin-echo pulse sequence designed to optimize the signal-to-noise ratio for repetition times (TR) less than 100 msec while preserving good image quality. Our implementation performs a 128 x 128 image in under 7 sec (TR = 50 msec) and has been used to follow the dynamics of Gd-DTPA in the rat kidneys.  相似文献   

20.
PURPOSE: To acquire high-resolution magnetic resonance (MR) images, we developed a new blinking artifact reduced pulse (BARP) sequence with a surface coil specialized for microscopic imaging (47 mm in diameter). MATERIALS AND METHODS: To reduce eye movement, we ascertained that the subjects' eyes were kept open and fixated to the target in the 1.5-T MR gantry. To reduce motion artifacts from blinking, we inserted rest periods for blinking (1.5 s within every 5 s) during MR scanning (T2-weighted fast spin echo; repetition time, 5 s; echo time, 100 ms; echo train, 11; matrix, 256 x 128; field of view, 5 cm; 1-mm thickness x 30 slices). Three scans (100 s x 3) were performed for each normal subject, and they were added together after automatic adjustment for location to reduce quality loss caused by head motion. RESULTS: T2-weighted MR images were acquired with a high resolution and a high signal-to-noise ratio. Motion artifacts were reduced with BARP, as compared with those with random blinking. Intraocular structures such as the iris and ciliary muscles were clearly visualized. Because the whole eye can be covered with a 1-mm thickness by this method, three-dimensional maps can easily be generated from the obtained images. CONCLUSION: The application of BARP with a surface coil of the human eye might become a useful and widely adopted procedure for MR microimaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号