首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Catalytic enantioselective [2,3]-rearrangements of in situ generated ammonium ylides from glycine pyrazoleamides and allyl bromides were achieved by employing a chiral N,N′-dioxide/MgII complex as the catalyst. This protocol provided a facile and efficient synthesis route to a series of anti-α-amino acid derivatives in good yields with high stereoselectivities. Moreover, a possible catalytic cycle was proposed to illustrate the reaction process and the origin of stereoselectivity.

The Lewis acid catalyzed asymmetric [2,3]-rearrangement of quaternary ammonium ylides formed in situ from glycine pyrazoleamides and allyl bromides.  相似文献   

2.
A catalytic enantioselective approach to the Myrioneuron alkaloids (−)-myrifabral A and (−)-myrifabral B is described. The synthesis was enabled by a palladium-catalyzed enantioselective allylic alkylation, that generates the C(10) all-carbon quaternary center. A key N-acyl iminium ion cyclization forged the cyclohexane fused tricyclic core, while vinyl boronate cross metathesis and oxidation afforded the lactol ring of (−)-myrifabral A. Adaptation of previously reported conditions allowed for the conversion of (−)-myrifabral A to (−)-myrifabral B.

A catalytic enantioselective approach to the Myrioneuron alkaloids (−)-myrifabral A and (−)-myrifabral B is described.  相似文献   

3.
An iridium catalyzed asymmetric hydrogenation of racemic exocyclic γ,δ-unsaturated β-ketoesters via dynamic kinetic resolution to functionalized chiral allylic alcohols was developed. With the chiral spiro iridium catalysts Ir-SpiroPAP, a series of racemic exocyclic γ,δ-unsaturated β-ketoesters bearing a five-, six-, or seven-membered ring were hydrogenated to the corresponding functionalized chiral allylic alcohols in high yields with good to excellent enantioselectivities (87 to >99% ee) and cis-selectivities (93 : 7 to >99 : 1). The origin of the excellent stereoselectivity was also rationalized by density functional theory calculations. Furthermore, this protocol could be performed on gram scale and at a lower catalyst loading (0.002 mol%) without the loss of reactivity and enantioselectivity, and has been successfully applied in the enantioselective synthesis of chiral carbocyclic δ-amino esters and the β-galactosidase inhibitor isogalactofagomine.

An iridium catalyzed asymmetric hydrogenation of exocyclic γ,δ-unsaturated β-ketoesters via dynamic kinetic resolution was developed, providing efficient protocol for enantioselective synthesis of functionalized chiral allylic alcohols.  相似文献   

4.
PdII/CuI co-catalyze an arylation reaction of gem-difluoroalkenes using arylsulfonyl chlorides to deliver α,α-difluorobenzyl products. The reaction proceeds through a β,β-difluoroalkyl–Pd intermediate that typically undergoes unimolecular β-F elimination to deliver monofluorinated alkene products in a net C–F functionalization reaction. However to avoid β-F elimination, we offer the β,β-difluoroalkyl–Pd intermediate an alternate low-energy route involving β-H elimination to ultimately deliver difluorinated products in a net arylation/isomerization sequence. Overall, this reaction enables exploration of new reactivities of unstable fluorinated alkyl–metal species, while also providing new opportunities for transforming readily available fluorinated alkenes into more elaborate substructures.

PdII/CuI co-catalyze a desulfitative arylation of aliphatic gem-difluoroalkenes in a radical arylation/migratory insertion sequence that avoids β-F elimination.  相似文献   

5.
Cα-Tetrasubstituted α-amino acids are ubiquitous and unique structural units in bioactive natural products and pharmaceutical compounds. The asymmetric synthesis of these molecules has attracted a lot of attention, but a more efficient method is still greatly desired. Here we describe the first sequential four-step acylation reaction for the efficient synthesis of chiral Cα-tetrasubstituted α-amino acid derivatives from simple N-acylated amino acids via an auto-tandem catalysis using a single nucleophilic catalyst. The synthetic efficiency is improved via a direct enantioselective C-acylation; the methodology affords the corresponding Cα-tetrasubstituted α-amino acid derivatives with excellent enantioselectivities (up to 99% ee). This step-economic, one-pot, and auto-tandem strategy provides facile access to important chiral building blocks, such as peptides, serines, and oxazolines, which are often used in medicinal and synthetic chemistry.

The first four-step sequential reaction for the synthesis of Cα-tetrasubstituted chiral α-amino acid derivatives via auto-tandem catalysis has been developed.  相似文献   

6.
The isolable chelating bis(N-heterocyclic silylenyl)-substituted terphenyl ligand [SiII(Terp)SiII] as well as its bis(phosphine) analogue [PIII(Terp)PIII] have been synthesised and fully characterised. Their reaction with Ni(cod)2 (cod = cycloocta-1,5-diene) affords the corresponding 16 VE nickel(0) complexes with an intramolecular η2-arene coordination of Ni, [E(Terp)E]Ni(η2-arene) (E = PIII, SiII; arene = phenylene spacer). Due to a strong cooperativity of the Si and Ni sites in H2 activation and H atom transfer, [SiII(Terp)SiII]Ni(η2-arene) mediates very effectively and chemoselectively the homogeneously catalysed hydrogenation of olefins bearing functional groups at 1 bar H2 pressure and room temperature; in contrast, the bis(phosphine) analogous complex shows only poor activity. Catalytic and stoichiometric experiments revealed the important role of the η2-coordination of the Ni(0) site by the intramolecular phenylene with respect to the hydrogenation activity of [SiII(Terp)SiII]Ni(η2-arene). The mechanism has been established by kinetic measurements, including kinetic isotope effect (KIE) and Hammet-plot correlation. With this system, the currently highest performance of a homogeneous nickel-based hydrogenation catalyst of olefins (TON = 9800, TOF = 6800 h−1) could be realised.

The isolable chelating bis(N-heterocyclic silylenyl)-substituted terphenyl ligand [SiII(Terp)SiII] as well as its bis(phosphine) analogue [PIII(Terp)PIII] have been synthesised and fully characterised.  相似文献   

7.
The first iridium-catalyzed enantioselective olefinic C(sp2)–H allylic alkylation is developed in cooperation with Lewis base catalysis. This reaction, catalyzed by cinchonidine and an in situ generated cyclometalated Ir(i)/phosphoramidite complex, makes use of the latent enolate character of an α,β-unsaturated carbonyl compound, namely coumalate ester, to introduce an allyl group at its α-position in a branched-selective manner in moderate to good yield with good to excellent enantioselectivities (up to 98 : 2 er).

The first iridium-catalyzed enantioselective allylic alkylation of an olefinic C(sp2)–H bond – that of an α,β-unsaturated carbonyl compound, is developed in cooperation with Lewis base catalysis.  相似文献   

8.
In order to better understand the chiral recognition mechanisms of positively charged cyclodextrin (CD) derivatives, the synthesis, the pKa determination by 1H nuclear magnetic resonance (NMR)-pH titration and a comparative chiral capillary electrophoretic (CE) study were performed with two series of mono-substituted cationic single isomer CDs. The first series of selectors were mono-(6-N-pyrrolidine-6-deoxy)-β-CD (PYR-β-CD), mono-(6-N-piperidine-6-deoxy)-β-CD (PIP-β-CD), mono-(6-N-morpholine-6-deoxy)-β-CD (MO-β-CD) and mono-(6-N-piperazine-6-deoxy)-β-CD (PIPA-β-CD), carrying a pH-adjustable moiety at the narrower rim of the cavity, while the second set represented by their quaternarized, permanently cationic counterparts: mono-(6-N-(N-methyl-pyrrolidine)-6-deoxy)-β-CD (MePYR-β-CD), mono-(6-N-(N-methyl-piperidine)-6-deoxy)-β-CD (MePIP-β-CD), mono-(6-N-(N-methyl-morpholine)-6-deoxy)-β-CD (MeMO-β-CD) and mono-(6-N-(4,4-N,N-dimethyl-piperazine)-β-CD (diMePIPA-β-CD). Based on pH-dependent and selector concentration-dependent comparative studies of these single isomer N-heterocyclic CDs presented herein, it can be concluded that all CDs could successfully be applied as chiral selectors for the enantiodiscrimination of several negatively charged and zwitterionic model racemates. The substituent-dependent enantiomer migration order reversal of dansylated-valine using PIP-β-CD contrary to PYP-β-CD, MO-β-CD and PIPA-β-CD was also studied by 1H- and 2D ROESY NMR experiments.  相似文献   

9.
An isothiourea-catalysed enantioselective synthesis of novel tetrahydroindolizine derivatives is reported through a one-pot tandem sequential process. The application of 2-(pyrrol-1-yl)acetic acid in combination with either a trifluoromethyl enone or an α-keto-β,γ-unsaturated ester in an enantioselective Michael addition–lactonisation process, followed by in situ ring-opening and cyclisation, led to a range of 24 tetrahydroindolizine derivatives containing three stereocentres in up to >95 : 5 dr and >99 : 1 er.

The isothiourea-catalysed enantioselective synthesis of tetrahydroindolizine derivatives containing three stereocentres is reported through a one-pot tandem sequential process.  相似文献   

10.
Umpolung (polarity reversal) tactics of aldehydes/ketones have greatly broadened carbonyl chemistry by enabling transformations with electrophilic reagents and deoxygenative functionalizations. Herein, we report the first ruthenium-catalyzed β-selective alkylation of vinylpyridines with both naturally abundant aromatic and aliphatic aldehyde/ketones via N2H4 mediated deoxygenative couplings. Compared with one-electron umpolung of carbonyls to alcohols, this two-electron umpolung strategy realized reductive deoxygenation targets, which were not only applicable to the regioselective alkylation of a broad range of 2/4-alkene substituted pyridines, but also amenable to challenging 3-vinyl and steric-embedded internal pyridines as well as their analogous heterocyclic structures.

Ruthenium-catalyzed β-selective alkylation of vinylpyridines with carbonyls (both aromatic and aliphatic ketones/aldehydes) via N2H4 mediated deoxygenative couplings was achieved.  相似文献   

11.
This work emphasizes easy access to α-vinyl and aryl amino acids via Ni-catalyzed cross-electrophile coupling of bench-stable N-carbonyl-protected α-pivaloyloxy glycine with vinyl/aryl halides and triflates. The protocol permits the synthesis of α-amino acids bearing hindered branched vinyl groups, which remains a challenge using the current methods. On the basis of experimental and DFT studies, simultaneous addition of glycine α-carbon (Gly) radicals to Ni(0) and Ar–Ni(ii) may occur, with the former being more favored where oxidative addition of a C(sp2) electrophile to the resultant Gly–Ni(i) intermediate gives a key Gly–Ni(iii)–Ar intermediate. The auxiliary chelation of the N-carbonyl oxygen to the Ni center appears to be crucial to stabilize the Gly–Ni(i) intermediate.

We have developed Ni-catalyzed reductive coupling of N-carbonyl protected α-pivaloyloxy glycine with Csp2-electrophiles that enabled facile preparation of α-amino acids, including those bearing hindered branched vinyl groups.  相似文献   

12.
A substituted donor–acceptor cyclobutenecarboxamide is synthesized with modest enantiocontrol through a chiral copper(I) complex catalyzed [3 + 1]-cycloaddition reaction of α-acyl diphenylsulfur ylides with 3-siloxy-2-diazo-3-butenamides. With a methyl substituent on the 4-position of the 3-butenamide, the cis-vicinal-3,4-disubstituted cyclobutenecarboxamide is formed with >20:1 diastereocontrol. Donor-acceptor 3-methyl-2-siloxycyclopropenecarboxamide is rapidly formed from the reactant enoldiazoamide and undergoes catalytic ring opening to give only the Z-γ-substituted metallo-enolcarbene. Elimination from 3-siloxy-2-diazo-3-pentenamide to form the conjugated 3-siloxy-2,4-pentadienamide is competitive but minimized at low temperature.  相似文献   

13.
Heme and nonheme-type flavone synthase enzymes, FS I and FS II are responsible for the synthesis of flavones, which play an important role in various biological processes, and have a wide range of biomedicinal properties including antitumor, antimalarial, and antioxidant activities. To get more insight into the mechanism of this curious enzyme reaction, nonheme structural and functional models were carried out by the use of mononuclear iron, [FeII(CDA-BPA*)]2+ (6) [CDA-BPA = N,N,N’,N’-tetrakis-(2-pyridylmethyl)-cyclohexanediamine], [FeII(CDA-BQA*)]2+ (5) [CDA-BQA = N,N,N’,N’-tetrakis-(2-quinolilmethyl)-cyclohexanediamine], [FeII(Bn-TPEN)(CH3CN)]2+ (3) [Bn-TPEN = N-benzyl-N,N’,N’-tris(2-pyridylmethyl)-1,2-diaminoethane], [FeIV(O)(Bn-TPEN)]2+ (9), and manganese, [MnII(N4Py*)(CH3CN)]2+ (2) [N4Py* = N,N-bis(2-pyridylmethyl)-1,2-di(2-pyridyl)ethylamine)], [MnII(Bn-TPEN)(CH3CN)]2+ (4) complexes as catalysts, where the possible reactive intermediates, high-valent FeIV(O) and MnIV(O) are known and well characterised. The results of the catalytic and stoichiometric reactions showed that the ligand framework and the nature of the metal cofactor significantly influenced the reactivity of the catalyst and its intermediate. Comparing the reactions of [FeIV(O)(Bn-TPEN)]2+ (9) and [MnIV(O)(Bn-TPEN)]2+ (10) towards flavanone under the same conditions, a 3.5-fold difference in reaction rate was observed in favor of iron, and this value is three orders of magnitude higher than was observed for the previously published [FeIV(O)(N2Py2Q*)]2+ [N,N-bis(2-quinolylmethyl)-1,2-di(2-pyridyl)ethylamine] species.  相似文献   

14.
The synthesis of γ-chiral borylalkanes through copper-catalyzed enantioselective SN2′-reduction of γ,γ-disubstituted allylic substrates and subsequent hydroboration was reported. A copper–DTBM-Segphos catalyst produced a range of γ-chiral alkylboronates from easily accessible allylic acetate or benzoate with high enantioselectivities up to 99% ee. Furthermore, selective organic transformations of the resulting γ-chiral alkylboronates generated the corresponding γ-chiral alcohol, arene and amine compounds.

Copper-catalyzed reductive hydroboration of γ,γ-disubstituted allylic substrates enables preparation of γ-chiral alkylboron compounds in a one-pot cascade manner.  相似文献   

15.
The chemical variability and the in vitro anti-inflammatory activity of the leaf essential oil from Ivorian Isolona dewevrei were investigated for the first time. Forty-seven oil samples were analyzed using a combination of CC, GC(RI), GC-MS and 13C-NMR, thus leading to the identification of 113 constituents (90.8–98.9%). As the main components varied drastically from sample to sample, the 47 oil compositions were submitted to hierarchical cluster and principal components analyses. Three distinct groups, each divided into two subgroups, were evidenced. Subgroup I−A was dominated by (Z)-β-ocimene, β-eudesmol, germacrene D and (E)-β-ocimene, while (10βH)-1β,8β-oxido-cadina-4-ene, santalenone, trans-α-bergamotene and trans-β-bergamotene were the main compounds of Subgroup I−B. The prevalent constituents of Subgroup II−A were germacrene B, (E)-β-caryophyllene, (5αH,10βMe)-6,12-oxido-elema-1,3,6,11(12)-tetraene and γ-elemene. Subgroup II−B displayed germacrene B, germacrene D and (Z)-β-ocimene as the majority compounds. Germacrene D was the most abundant constituent of Group III, followed in Subgroup III−A by (E)-β-caryophyllene, (10βH)-1β,8β-oxido-cadina-4-ene, germacrene D-8-one, and then in Subgroup III−B by (Z)-β-ocimene and (E)-β-ocimene. The observed qualitative and quantitative chemical variability was probably due to combined factors, mostly phenology and season, then harvest site to a lesser extent. The lipoxygenase inhibition by a leaf oil sample was also evaluated. The oil IC50 (0.020 ± 0.005 mg/mL) was slightly higher than the non-competitive lipoxygenase inhibitor NDGA IC50 (0.013 ± 0.003 mg/mL), suggesting a significant in vitro anti-inflammatory potential.  相似文献   

16.
Amomum Villosum Lour. (A. villosum) is a folk medicine that has been used for more than 1300 years. However, study of the polysaccharides of A. villosum is seriously neglected. The objectives of this study are to explore the structural characteristics of polysaccharides from A. villosum (AVPs) and their effects on immune cells. In this study, the acidic polysaccharides (AVPG-1 and AVPG-2) were isolated from AVPs and purified via anion exchange and gel filtration chromatography. The structural characteristics of the polysaccharides were characterized by methylation, HPSEC-MALLS-RID, HPLC, FT-IR, SEM, GC-MS and NMR techniques. AVPG-1 with a molecular weight of 514 kDa had the backbone of → 4)-α-d-Glcp-(1 → 3,4)-β-d-Glcp-(1 → 4)-α-d-Glcp-(1 →. AVPG-2 with a higher molecular weight (14800 kDa) comprised a backbone of → 4)-α-d-Glcp-(1 → 3,6)-β-d-Galp-(1 → 4)-α-d-Glcp-(1 →. RAW 264.7 cells were used to investigate the potential effect of AVPG-1 and AVPG-2 on macrophages, and lipopolysaccharide (LPS) was used as a positive control. The results from bioassays showed that AVPG-2 exhibited stronger immunomodulatory activity than AVPG-1. AVPG-2 significantly induced nitric oxide (NO) production as well as the release of interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α), and upregulated phagocytic capacities of RAW 264.7 cells. Real-time PCR analysis revealed that AVPG-2 was able to turn the polarization of macrophages to the M1 direction. These results suggested that AVPs could be explored as potential immunomodulatory agents of the functional foods or complementary medicine.  相似文献   

17.
The development of environmentally benign catalysts for highly enantioselective asymmetric cis‐dihydroxylation (AD) of alkenes with broad substrate scope remains a challenge. By employing [FeII(L)(OTf)2] (L=N,N′‐dimethyl‐N,N′‐bis(2‐methyl‐8‐quinolyl)‐cyclohexane‐1,2‐diamine) as a catalyst, cis‐diols in up to 99.8 % ee with 85 % isolated yield have been achieved in AD of alkenes with H2O2 as an oxidant and alkenes in a limiting amount. This “[FeII(L)(OTf)2]+H2O2” method is applicable to both (E)‐alkenes and terminal alkenes (24 examples >80 % ee, up to 1 g scale). Mechanistic studies, including 18O‐labeling, UV/Vis, EPR, ESI‐MS analyses, and DFT calculations lend evidence for the involvement of chiral FeIII‐OOH active species in enantioselective formation of the two C?O bonds.  相似文献   

18.
The endiandric acids are classic targets in natural product synthesis. The spectacular 8π/6π-electrocylisation/intramolecular Diels–Alder (8π/6π/IMDA) reaction cascade at the heart of their biosynthesis has inspired practitioners and students of pericyclic chemistry for nearly forty years. All previous synthetic approaches have sought to prepare a linear tetraene and thereby initiate the cascade. In this communication we demonstrate the use of cyclooctatetraene to rapidly intercept the 8π/6π/IMDA cascade at the cyclooctatriene stage. Endiandric acid J and beilcyclone A are prepared for the first time in six and five steps, respectively. The strategy features a tactical overall anti-vicinal difunctionalisation of cyclooctatetraene through SN2′ alkylation of cyclooctatetraene oxide followed by an intriguing tandem Claisen rearrangement/6π-electrocyclisation from the corresponding vinyl ether. This rapidly constructs an advanced bicyclo[4.2.0]octadiene aldehyde intermediate. Olefinations and intramolecular Diels–Alder cycloadditions complete the syntheses. This establishes a short and efficient new path to the endiandric acid natural products. DFT modelling predicts thermal racemisation of bicyclo[4.2.0]octadiene intermediates, dashing hopes of enantioselective synthesis.

A new strategy to the endiandric acid natural products is demonstrated by intercepting the 8π/6π/IMDA pericyclic cascade through a tactical anti-vicinal difunctionalisation of cyclooctatetraene.  相似文献   

19.
Homogeneous tertiary N,N-dimethyl-N-β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylamines, LM(EO)nAT, are niche intermediates in the synthesis of homogeneous N-alkyl (C1–C18)-N,N-dimethyl-N-β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylammonium chlorides (unitary degree of oligomerization of ethylene oxide in the polyoxyethylene chain). This paper synthetically presents the dependence of the reductive methylation yields of homogeneous primary β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylamines, LM(EO)nAP, on the reaction time (10–90 min), the temperature (70 °C), the molar ratio formic aldehyde /LM(EO)nAP (1.1/1–2.5/1), the molar ratio HCOOH/LM(EO)nAP (5/1), the degree of oligomerization of ethylene oxide in the homogeneous polyoxyethylene chain in the 3,6,9,12,18 series, and the structure of the phase-transfer catalysts. The steric effects of hydrophobic groups CH3 and C18H37 grafted onto the ammonium function, and the micellar phenomena in the vicinity of their critical micellar concentration, directly proportional to the homogeneous degree of oligomerization, were highlighted. In all cases, a steady increase in reductive methylation yields was observed, with even quantitative values obtained. The high purity of the homologous series LM(EO)nAT will allow their personalization as reference structures for the study of the evolution of basic colloidal characteristics useful in forecasting technological applications. LM(EO)nAP were obtained either by direct amidoethylation (nucleophilic addition under basic catalysis of homogeneous lauryl/myristyl 7/3 polyethoxylated n = 3, 6, 9, 12, 18 alcohols, LM(EO)nOH, to acrylamide monomer) or by cyanoethylation of LM(EO)nOH under basic catalysis at 25–50 °C, in the presence of Fe2+ cations as oligomerization/polymerization inhibitor, followed by partial acid hydrolysis of homogeneous β-alkyl (C12H25/C14H29) 7/3 polyethyleneoxy n = 3, 6, 9, 12, 18 propionitriles, LM(EO)nPN, to β-alkyl (C12H25/C14H29) 7/3 polyethyleneoxy n = 3, 6, 9, 12, 18 propionamides, LM(EO)nPD, which led to LM(EO)nAP by Hoffmann degradation. Homogeneous higher tertiary polyetheramines LM(EO)nAT were structurally characterized.  相似文献   

20.
Construction of C–C bonds at the α-carbon is a challenging but synthetically indispensable approach to α-branched carbonyl motifs that are widely represented among drugs, natural products, and synthetic intermediates. Here, we describe a simple approach to generation of boron enolates in the absence of strong bases that allows for introduction of both α-alkyl and α-aryl groups in a reaction of readily accessible 1,2-dicarbonyls and organoboranes. Obviation of unselective, strongly basic and nucleophilic reagents permits carrying out the reaction in the presence of electrophiles that intercept the intermediate boron enolates, resulting in two new α-C–C bonds in a tricomponent process.

α-Branched carboxylic acids and other carbonyls are readily accessed by a metal- and base-free deoxygenative α-alkylation and α-arylation of 1,2-dicarbonyls via boron enolates, resulting in a tricomponent coupling with unconventional electrophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号