首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 174 毫秒
1.
Two copper complex solvatomorphs, namely (3,10‐C‐meso‐3,5,7,7,10,12,14,14‐octamethyl‐1,4,8,11‐tetraazacyclotetradecane)bis(perchlorato‐κO)copper(II) 1.2‐hydrate, [Cu(ClO4)2(C18H40N4)]·1.2H2O, (I), and (3,10‐C‐meso‐3,5,7,7,10,12,14,14‐octamethyl‐1,4,8,11‐tetraazacyclotetradecane)bis(perchlorato‐κO)copper(II), [Cu(ClO4)2(C18H40N4)], (II), are described and compared with each other and with a third, already reported, anhydrous diastereomer, denoted (III). Both compounds present very similar centrosymmetic coordination environments, with the CuII cation lying on an inversion centre in a distorted 4+2 octahedral environment, defined by the macrocyclic N4 group in the equatorial sites and two perchlorate groups in trans‐axial positions [one of the perchlorate ligands in (I) is partially disordered]. The most significant difference in molecular shape is seen in the orientation of the perchlorate anions, and the influence of this on the intramolecular hydrogen bonding is discussed. The (partially) hydrated state of (I) favours the formation of chains along [011], while the anhydrous character of (II) and (III) promotes loosely bound structures with low packing indices.  相似文献   

2.
In the structure of trans‐bis(ethanol‐κO)tetrakis(1H‐imidazole‐κN3)copper(II) bis[μ‐N‐(2‐oxidobenzylidene)‐D,L‐glutamato]‐κ4O1,N,O2′:O2′4O2′:O1,N,O2′‐bis[(1H‐imidazole‐κN3)cuprate(II)], [Cu(C3H4N2)4(C2H6O)2][Cu2(C15H14N3O5)2], both ions are located on centres of inversion. The cation is mononuclear, showing a distorted octahedral coordination, while the anion is a binuclear centrosymmetric dimer with a square‐pyramidal copper(II) coordination. An extensive three‐dimensional hydrogen‐bonding network is formed between the ions. According to B3LYP/6–31G* calculations, the two equivalent components of the anion are in doublet states (spin density located mostly on CuII ions) and are coupled as a triplet, with only marginal preference over an open‐shell singlet.  相似文献   

3.
The three transition‐metal complexes, (meso‐5,7,7,12,14,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane‐κ4N)bis(perchlorato‐κO)copper(II), [Cu(ClO4)2(C18H40N4)], (I), (meso‐5,7,7,12,14,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane‐κ4N)bis(nitrato‐κO)zinc(II), [Zn(NO3)2(C18H40N4)], (II), and aquachlorido(meso‐5,7,7,12,14,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane‐κ4N)copper(II) chloride, [CuCl(C18H40N4)(H2O)]Cl, (III), are described. The molecules display a very similarly distorted 4+2 octahedral environment for the cation [located at an inversion centre in (I) and (II)], defined by the macrocycle N4 group in the equatorial sites and two further ligands in trans‐axial positions [two O–ClO3 ligands in (I), two O–NO2 ligands in (II) and one chloride and one aqua ligand in (III)]. The most significant difference in molecular shape resides in these axial ligands, the effect of which on the intra‐ and intermolecular hydrogen bonding is discussed. In the case of (I), all strong hydrogen‐bond donors are saturated in intramolecular interactions, while weak intermolecular C—H...O contacts result in a three‐dimensional network. In (II) and (III), instead, there are N—H and O—H donors left over for intermolecular interactions, giving rise to the formation of strongly linked but weakly interacting chains.  相似文献   

4.
Two mononuclear copper complexes, {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}(3,5‐dimethyl‐1H‐pyrazole‐κN2)(perchlorato‐κO)copper(II) perchlorate, [Cu(ClO4)(C5H8N2)(C12H19N5)]ClO4, (I), and {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}bis(3,5‐dimethyl‐1H‐pyrazole‐κN2)copper(II) bis(hexafluoridophosphate), [Cu(C5H8N2)2(C12H19N5)](PF6)2, (II), have been synthesized by the reactions of different copper salts with the tripodal ligand tris[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (TDPA) in acetone–water solutions at room temperature. Single‐crystal X‐ray diffraction analysis revealed that they contain the new tridentate ligand bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (BDPA), which cannot be obtained by normal organic reactions and has thus been captured in the solid state by in situ synthesis. The coordination of the CuII ion is distorted square pyramidal in (I) and distorted trigonal bipyramidal in (II). The new in situ generated tridentate BDPA ligand can act as a meridional or facial ligand during the process of coordination. The crystal structures of these two compounds are stabilized by classical hydrogen bonding as well as intricate nonclassical hydrogen‐bond interactions.  相似文献   

5.
The crystal structures of the title complexes, namely trans‐bis­(iso­quinoline‐3‐carboxyl­ato‐κ2N,O)­bis­(methanol‐κO)cobalt(II), [Co(C10H6NO2)2(CH3OH)2], and the corresponding nickel(II) and copper(II) complexes, [Ni(C10H6NO2)2(CH3OH)2] and [Cu(C10H6NO2)2(CH3OH)2], are isomorphous and contain metal ions at centres of inversion. The three compounds have the same distorted octahedral coordination geometry, and each metal ion is bonded by two quinoline N atoms, two carboxyl­ate O atoms and two methanol O atoms. Two iso­quinoline‐3‐carboxyl­ate ligands lie in trans positions, forming the equatorial plane, and the two methanol ligands occupy the axial positions. The complex mol­ecules are linked together by O—H⋯O hydrogen bonds between the methanol ligands and neighbouring carboxyl­ate groups.  相似文献   

6.
The rational selection of ligands is vitally important in the construction of coordination complexes. Two novel ZnII complexes, namely bis(acetato‐κO)bis[1‐(1H‐benzotriazol‐1‐ylmethyl)‐2‐propyl‐1H‐imidazole‐κN3]zinc(II) monohydrate, [Zn(C13H15N5)2(C2H3O2)2]·H2O, ( 1 ), and bis(azido‐κN1)bis[1‐(1H‐benzotriazol‐1‐ylmethyl)‐2‐propyl‐1H‐imidazole‐κN3]zinc(II), [Zn(C13H15N5)2(N3)2], ( 2 ), constructed from the asymmetric multidentate imidazole ligand, have been synthesized under mild conditions and characterized by elemental analyses, IR spectroscopy and single‐crystal X‐ray diffraction analysis. Both complexes exhibit a three‐dimensional supramolecular network directed by different intermolecular interactions between discrete mononuclear units. The complexes were also investigated by fluorescence and thermal analyses. The experimental results show that ( 1 ) is a promising fluorescence sensor for detecting Fe3+ ions and ( 2 ) is effective as an accelerator of the thermal decomposition of ammonium perchlorate.  相似文献   

7.
A fluorophore‐labelled copper(II) complex, aquabis(dimethylformamide‐κO )(perchlorato‐κO )[2‐(quinolin‐2‐yl)‐1,3‐oxazolo[4,5‐f ][1,10]phenanthroline]copper(II) perchlorate monohydrate, [Cu(ClO4)(C22H12N4O)(C3H7NO)2(H2O)]ClO4·H2O, has been synthesized and characterized. A cyclic hydrogen‐bonded water–perchlorate anionic cluster, i.e. [(ClO4)2(H2O)2]2−, has been identified within the structure. Each cyclic anionic cluster unit is interconnected by hydrogen bonding to the cation. The cations join into an infinite hydrogen‐bonded chain running in the [010] direction. Furthermore, interaction of the complex with calf‐thymus DNA (CT‐DNA) and cellular localization within the cells was explored. Spectroscopic studies indicate that the compound has a good affinity for DNA and stains the nucleus of the cells.  相似文献   

8.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

9.
The structures of three copper‐containing complexes, namely (benzoato‐κ2O,O′)[(E)‐2‐({[2‐(diethylamino)ethyl]imino}methyl)phenolato‐κ3N,N′,O]copper(II) dihydrate, [Cu(C7H5O2)(C13H19N2O)]·2H2O, 1 , [(E)‐2‐({[2‐(diethylamino)ethyl]imino}methyl)phenolato‐κ3N,N′,O](2‐phenylacetato‐κ2O,O′)copper(II), [Cu(C8H7O2)(C13H19N2O)], 2 , and bis[μ‐(E)‐2‐({[3‐(diethylamino)propyl]imino}methyl)phenolato]‐κ4N,N′,O:O4O:N,N′,O‐(μ‐2‐methylbenzoato‐κ2O:O′)copper(II) perchlorate, [Cu2(C8H7O2)(C12H17N2O)2]ClO4, 3 , have been reported and all have been tested for their activity in the oxidation of d ‐galactose. The results suggest that, unlike the enzyme galactose oxidase, due to the precipitation of Cu2O, this reaction is not catalytic as would have been expected. The structures of 1 and 2 are monomeric, while 3 consists of a dimeric cation and a perchlorate anion [which is disordered over two orientations, with occupancies of 0.64 (4) and 0.36 (4)]. In all three structures, the central Cu atom is five‐coordinated in a distorted square‐pyramidal arrangment (τ parameter of 0.0932 for 1 , 0.0888 for 2 , and 0.142 and 0.248 for the two Cu centers in 3 ). In each species, the environment about the Cu atom is such that the vacant sixth position is open, with very little steric crowding.  相似文献   

10.
Copper(II) bis(4,4,4‐trifluoro‐1‐phenylbutane‐1,3‐dionate) complexes with pyridin‐2‐one (pyon), 3‐hydroxypyridine (hpy) and 3‐hydroxypyridin‐2‐one (hpyon) were prepared and the solid‐state structures of (pyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)] or [Cu(tfpb‐κ2O ,O ′)2(pyon‐κO )], (I), bis(pyridin‐3‐ol‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)2] or [Cu(tfpb‐κ2O ,O ′)2(hpy‐κO )2], (II), and bis(3‐hydroxypyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO2)2] or [Cu(tfpb‐κ2O ,O ′)2(hpyon‐κO )2], (III), were determined by single‐crystal X‐ray analysis. The coordination of the metal centre is square pyramidal and displays a rare example of a mutual cis arrangement of the β‐diketonate ligands in (I) and a trans‐octahedral arrangement in (II) and (III). Complex (II) presents the first crystallographic evidence of κO‐monodentate hpy ligation to the transition metal enabling the pyridine N atom to participate in a two‐dimensional hydrogen‐bonded network through O—H…N interactions, forming a graph‐set motif R 22(7) through a C—H…O interaction. Complex (III) presents the first crystallographic evidence of monodentate coordination of the neutral hpyon ligand to a metal centre and a two‐dimensional hydrogen‐bonded network is formed through N—H…O interactions facilitated by C—H…O interactions, forming the graph‐set motifs R 22(8) and R 22(7).  相似文献   

11.
The title compounds, trans‐bis(1H‐benzimidazole‐2‐carboxylato‐κ2N3,O)bis(ethanol‐κO)cadmium(II), [Cd(C8H5N2O2)2(C2H6O)2], (I), and trans‐bis(1H‐benzimidazole‐κN3)bis(1H‐benzimidazole‐2‐carboxylato‐κ2N3,O)nickel(II), [Ni(C8H5N2O2)2(C7H6N2)2], (II), are hydrogen‐bonded supramolecular complexes. In (I), the CdII ion is six‐coordinated by two O atoms from two ethanol molecules, and by two O and two N atoms from two bidentate benzimidazole‐2‐carboxylate (HBIC) ligands, giving a distorted octahedral geometry. The combination of O—H...O and N—H...O hydrogen bonds results in two‐dimensional layers parallel to the ab plane. In (II), the six‐coordinated NiII atom, which lies on an inversion centre, shows a similar distorted octahedral geometry to the CdII ion in (I); two benzimidazole molecules occupy the axial sites and the equatorial plane contains two chelating HBIC ligands. Pairs of N—H...O hydrogen bonds between pairs of HBIC anions connect adjacent NiII coordination units to form a one‐dimensional chain parallel to the a axis. Moreover, these one‐dimensional chains are further linked via N—H...O hydrogen bonds between HBIC anions and benzimidazole molecules to generate a three‐dimensional supramolecular framework. The two compounds show quite different supramolecular networks, which may be explained by the fact that different co‐ligands occupy the axial sites in the coordination units.  相似文献   

12.
The one‐dimensional chain catena‐poly­[[aqua(2,2′:6′,2′′‐terpyridyl‐κ3N)­nickel(II)]‐μ‐cyano‐κ2N:C‐[bis­(cyano‐κC)nickelate(II)]‐μ‐cyano‐κ2C:N], [Ni(terpy)(H2O)]‐trans‐[Ni‐μ‐(CN)2‐(CN)2]n or [Ni2­(CN)4­(C15H11N3)(H2O)], consists of infinite linear chains along the crystallographic [10] direction. The chains are composed of two distinct types of nickel ions, paramagnetic octahedral [Ni(terpy)(H2O)]2+ cations (with twofold crystallographic symmetry) and diamagnetic planar [Ni(CN)4]2? anions (with the Ni atom on an inversion center). The [Ni(CN)4]2? units act as bidentate ligands bridging through two trans cyano groups thus giving rise to a new example of a transtrans chain among planar tetra­cyano­nickelate complexes. The coordination geometry of the planar nickel unit is typical of slightly distorted octahedral nickel(II) complexes, but for the [Ni(CN)4]2? units, the geometry deviates from a planar configuration due to steric interactions with the ter­pyridine ligands.  相似文献   

13.
The title compound, catena‐poly[[[diaqua(methanol‐κO)copper(II)]‐μ‐N‐(4‐methylpyrimidin‐2‐yl‐κN1)pyrazin‐2‐amine‐κ2N1:N4] [[aqua(aqua/methanol‐κO)(perchlorato‐κO)copper(II)]‐μ‐N‐(4‐methylpyrimidin‐2‐yl‐κN1)pyrazin‐2‐amine‐κ2N1:N4] tris(perchlorate) methanol monosolvate 1.419‐hydrate], {[Cu(C9H9N5)(CH3OH)(H2O)2][Cu(C9H9N5)(ClO4)(CH3OH)0.581(H2O)1.419](ClO4)3·CH3OH·1.419H2O}n, is a one‐dimensional straight‐chain polymer of N‐(4‐methylpyrimidin‐2‐yl)pyrazin‐2‐amine (L) with Cu(ClO4)2. The complex consists of two crystallographically independent one‐dimensional chains in which the CuII atoms exhibit two different octahedral coordination geometries. The L ligand coordinates to two CuII centres in a tridentate manner, with the pyrazine ring acting as a bridge linking the CuII coordination units and building an infinite one‐dimensional chain. Extensive hydrogen bonding among perchlorate anions, water molecules and L ligands results in three‐dimensional networks.  相似文献   

14.
In the new tin(IV) and copper(II) complexes, cis‐dichlorido‐trans‐dimethyl‐cis‐bis(N,N′,N′′‐tricyclohexylphosphoric triamide‐κO)tin(IV), [Sn(CH3)2Cl2(C18H36N3OP)2], (I), and trans‐diaquabis(N,N′,N′′‐tricyclohexylphosphoric triamide‐κO)copper(II) dinitrate–N,N′,N′′‐tricyclohexylphosphoric triamide (1/2), [Cu(C18H36N3OP)2(H2O)2](NO3)2·2C18H36N3OP, (II), the N,N′,N′′‐tricyclohexylphosphoric triamide (PTA) ligands exist as hydrogen‐bonded dimers via P=O...H—N interactions around the metal center. The asymmetric unit in (I) consists of one complete complex molecule located on a general position. The SnIV coordination geometry is octahedral with two cis hydrogen‐bonded PTA ligands, two cis chloride ligands and two trans methyl groups. The asymmetric unit in (II) contains one half of a [Cu(PTA)2(H2O)2]2+ dication on a special position (site symmetry for the Cu atom), one nitrate anion and one free PTA molecule, both on general positions. The complex adopts a square‐planar trans‐[CuO2O2] coordination geometry, with the CuII ion coordinated by two PTA ligands and two water molecules. Each of the noncoordinated PTA molecules is hydrogen bonded to a neighboring coordinated PTA molecule and an adjacent water molecule; the phosphoryl O atom acts as a double‐H‐atom acceptor. The P atoms in the PTA ligands of both complexes and in the noncoordinated hydrogen‐bonded molecules in (II) adopt a slightly distorted tetrahedral environment.  相似文献   

15.
The crystal structures of five new transition‐metal complexes synthesized using thiazole‐2‐carboxylic acid (2‐Htza), imidazole‐2‐carboxylic acid (2‐H2ima) or 1,3‐oxazole‐4‐carboxylic acid (4‐Hoxa), namely diaquabis(thiazole‐2‐carboxylato‐κ2N,O)cobalt(II), [Co(C4H2NO2S)2(H2O)2], 1 , diaquabis(thiazole‐2‐carboxylato‐κ2N,O)nickel(II), [Ni(C4H2NO2S)2(H2O)2], 2 , diaquabis(thiazole‐2‐carboxylato‐κ2N,O)cadmium(II), [Cd(C4H2NO2S)2(H2O)2], 3 , diaquabis(1H‐imidazole‐2‐carboxylato‐κ2N3,O)cobalt(II), [Co(C4H2N2O2)2(H2O)2], 4 , and diaquabis(1,3‐oxazole‐4‐carboxylato‐κ2N,O4)cobalt(II), [Co(C4H2NO3)2(H2O)2], 5 , are reported. The influence of the nature of the heteroatom and the position of the carboxyl group in relation to the heteroatom on the self‐assembly process are discussed based upon Hirshfeld surface analysis and used to explain the observed differences in the single‐crystal structures and the supramolecular frameworks and topologies of complexes 1 – 5 .  相似文献   

16.
The structures of trans‐bis[2‐(amino­methyl)­pyridine‐κ2N,N′]­bis­(saccharinato‐κN)­zinc(II), [Zn(C7H4NO3S)2(C6H8N2)2], (I), and [2‐(amino­ethyl)­pyridine‐κ2N,N′]bis­(saccharinato‐κN)­zinc(II), [Zn(C7H4NO3S)2(C7H10N2)], (II), exhibit octa‐ and tetrahedrally coordinated ZnII atoms, respectively. The di­amine ligands behave as N,N′‐bidentate ligands, while saccharinate (sac) is coordinated through the N atom. In (I), the complex lies about an inversion centre with the Zn atom disordered and displaced by 0.256 (2) Å from a centre of symmetry towards a sac N atom. The crystal structure of (I) is stabilized by N—H⋯O hydrogen bonds and the crystal packing of (II) is determined by hydrogen bonding as well as weak π–π stacking interactions between the sac ligands.  相似文献   

17.
The title complexes, trans‐di­aqua­bis­(quinoline‐2‐carboxyl­ato‐κ2N,O)­cobalt(II)–water–methanol (1/2/2), [Co(C10H6NO2)2(H2O)2]·2CH4O·2H2O, and trans‐di­aqua­bis­(quinoline‐2‐car­box­yl­ato‐κ2N,O)­nickel(II)–water–methanol (1/2/2), [Ni(C10H6NO2)2(H2O)2]·2CH4O·2H2O, are isomorphous and contain CoII and NiII ions at centers of inversion. Both complexes have the same distorted octahedral coordination geometry, and each metal ion is coordinated by two quinoline N atoms, two carboxyl­ate O atoms and two water O atoms. The quinoline‐2‐carboxyl­ate ligands lie in trans positions with respect to one another, forming the equatorial plane, with the two water ligands occupying the axial positions. The complex mol­ecules are linked together by hydrogen bonding involving a series of ring patterns which include the uncoordinated water and methanol mol­ecules.  相似文献   

18.
Three new diclofenac‐based copper(II) complexes, namely tetrakis{μ‐2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O:O′}bis(methanol‐κO)copper(II), [Cu2(μ‐dicl)4(CH3OH)2] ( 1 ), bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1‐vinyl‐1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(vim)2] ( 2 ), and bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(im)2] ( 3 ) [dicl is diclofenac (C14H10Cl2NO2), vim is 1‐vinylimidazole (C5H6N2) and im is imidazole (C3H4N2)], have been synthesized and characterized by elemental analysis, FT–IR spectroscopy, thermal analysis and single‐crystal X‐ray diffraction. X‐ray diffraction analysis shows that complex 1 consists of dimeric units in which the dicl ligand exhibits a bidentate syn,syn‐μ2 coordination mode linking two copper(II) centres. Complexes 2 and 3 have mononuclear units with the general formula [Cu(dicl)2L2] (L is vim or im) in which the CuII ions are octahedrally coordinated by two L and two dicl chelating ligands. The L and dicl ligands both occupy the trans positions of the coordination octahedron. The different coordination modes of dicl in the title complexes were revealed by Fourier transform IR (FT–IR) spectroscopy. The spin matching between the copper(II) centres in the dimeric [Cu2(μ‐dicl)4(CH3OH)2] units was also confirmed by magnetic data to be lower than the spin‐only value and electron paramagnetic resonance (EPR) spectra. The thermal properties of the complexes were investigated by thermogravimetric (TG) and differential thermal analysis (DTA) techniques.  相似文献   

19.
The complexes [2‐(1H‐imidazol‐4‐yl‐κN3)ethylamine‐κN]bis(tri‐tert‐butoxysilanethiolato‐κS)cobalt(II), [Co(C12H27O3SSi)2(C5H9N3)], and [2‐(1H‐imidazol‐4‐yl‐κN3)ethylamine‐κN]bis(tri‐tert‐butoxysilanethiolato‐κS)zinc(II), [Zn(C12H27O3SSi)2(C5H9N3)], are isomorphous. The central ZnII/CoII ions are surrounded by two S atoms from the tri‐tert‐butoxysilanethiolate ligand and by two N atoms from the chelating histamine ligand in a distorted tetrahedral geometry, with two intramolecular N—H...O hydrogen‐bonding interactions between the histamine NH2 groups and tert‐butoxy O atoms. Molecules of the complexes are joined into dimers via two intermolecular bifurcated N—H...(S,O) hydrogen bonds. The ZnII atom in [(1H‐imidazol‐4‐yl‐κN3)methanol]bis(tri‐tert‐butoxysilanethiolato‐κ2O,S)zinc(II), [Zn(C12H27O3SSi)2(C4H6N2O)], is five‐coordinated by two O and two S atoms from the O,S‐chelating silanethiolate ligand and by one N atom from (1H‐imidazol‐4‐yl)methanol; the hydroxy group forms an intramolecular hydrogen bond with sulfur. Molecules of this complex pack as zigzag chains linked by N—H...O hydrogen bonds. These structures provide reference details for cysteine‐ and histidine‐ligated metal centers in proteins.  相似文献   

20.
In title an­hydro­us catena‐poly­[[trans‐bis­(ethane‐1,2‐di­amine‐κ2N,N′)copper(II)]‐μ‐di­thionato‐κ2O:O′], [Cu(S2O6)(C2H8N2)2]n or [{H2N(CH2)2NH2}2Cu(O·O2SSO2·O)], successive Cu atoms are bridged by a single doubly charged di­thionate group, forming a one‐dimensional polymer with inversion centres at the metal atoms and the mid‐point of the S—S bond [Cu—O = 2.5744 (15) Å]. In title (hydrated) trans‐di­aqua­bis­(propane‐1,3‐di­amine‐κ2N,N′)copper(II) di­thionate, [Cu(C3H10N2)2(H2O)2](S2O6) or [{H2N(CH2)3NH2}2Cu(OH2)2](S2O6), both ions have imposed 2/m symmetry. The `axial' anion components are displaced by a pair of water ligands [Cu—O = 2.439 (3) Å], the shorter Cu—O distance being compensated by the lengthened Cu—N distance [2.0443 (18), cf. 2.0100 (13) and 2.0122 (16) Å].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号