首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the coordination polymer catena‐poly[[[diaqua[5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ2N3,O4]lead(II)]‐μ‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:N2] dihydrate], {[Pb(C10H6N3O4)(H2O)2]·2H2O}n, the two 5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylate ligands have different coordination modes, one being terminal and the other bridging. The bridging ligand links PbII cations into one‐dimensional coordination polymer chains. The structure is also stabilized by intra‐ and interchain π–π stacking interactions between the pyridine rings, resulting in the formation of a two‐dimensional network. Extensive hydrogen‐bonding interactions lead to the formation of a three‐dimensional supramolecular network.  相似文献   

2.
Single‐crystal X‐ray diffraction analysis of poly[bis(μ2‐5‐carboxy‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:O5)copper(II)], [Cu(C8H9N2O4)2)]n, indicates that one carboxylic acid group of the 2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PDI) ligand is deprotonated. The resulting H2PDI anion, acting as a bridge, connects the CuII cations to form a two‐dimensional (4,4)‐connected layer. Adjacent layers are further linked through interlayer hydrogen‐bond interactions, resulting in a three‐dimensional supramolecular structure.  相似文献   

3.
The crystal structures of five new transition‐metal complexes synthesized using thiazole‐2‐carboxylic acid (2‐Htza), imidazole‐2‐carboxylic acid (2‐H2ima) or 1,3‐oxazole‐4‐carboxylic acid (4‐Hoxa), namely diaquabis(thiazole‐2‐carboxylato‐κ2N,O)cobalt(II), [Co(C4H2NO2S)2(H2O)2], 1 , diaquabis(thiazole‐2‐carboxylato‐κ2N,O)nickel(II), [Ni(C4H2NO2S)2(H2O)2], 2 , diaquabis(thiazole‐2‐carboxylato‐κ2N,O)cadmium(II), [Cd(C4H2NO2S)2(H2O)2], 3 , diaquabis(1H‐imidazole‐2‐carboxylato‐κ2N3,O)cobalt(II), [Co(C4H2N2O2)2(H2O)2], 4 , and diaquabis(1,3‐oxazole‐4‐carboxylato‐κ2N,O4)cobalt(II), [Co(C4H2NO3)2(H2O)2], 5 , are reported. The influence of the nature of the heteroatom and the position of the carboxyl group in relation to the heteroatom on the self‐assembly process are discussed based upon Hirshfeld surface analysis and used to explain the observed differences in the single‐crystal structures and the supramolecular frameworks and topologies of complexes 1 – 5 .  相似文献   

4.
The structure of 1‐benzofuran‐2,3‐dicarboxylic acid (BFDC), C10H6O5, (I), exhibits an intramolecular hydrogen bond between one –COOH group and the other, while the second carboxyl function is involved in intermolecular hydrogen bonding to neighbouring species. The latter results in the formation of flat one‐dimensional hydrogen‐bonded chains in the crystal structure, which are π–π stacked along the normal to the plane of the molecular framework, forming a layered structure. 1:1 Cocrystallization of BFDC with pyridine, phenazine and 1,4‐phenylenediamine is associated with H‐atom transfer from BFDC to the base and charge‐assisted hydrogen bonding between the BFDC monoanion and the corresponding ammonium species, while preserving, in all cases, the intramolecular hydrogen bond between the carboxyl and carboxylate functions. The pyridinium 2‐carboxylato‐1‐benzofuran‐3‐carboxylic acid, C5H6N+·C10H5O5, (II), and phenazinium 3‐carboxylato‐1‐benzofuran‐2‐carboxylic acid, C12H9N2+·C10H5O5, (III), adducts form discrete hydrogen‐bonded ion‐pair entities. In the corresponding crystal structures, the two components are arranged in either segregated or mixed π–π stacks, respectively. On the other hand, the structure of 4‐aminoanilinium 2‐carboxylato‐1‐benzofuran‐3‐carboxylic acid, C6H9N2+·C10H5O5, (IV), exhibits an intermolecular hydrogen‐bonding network with three‐dimensional connectivity. Moreover, this fourth structure exhibits induction of supramolecular chirality by the extended hydrogen bonding, leading to a helical arrangement of the interacting moieties around 21 screw axes. The significance of this study is that it presents the first crystallographic characterization of pure BFDC, and manifestation of its cocrystallization with a variety of weakly basic amine molecules. It confirms the tendency of BFDC to preserve its intramolecular hydrogen bond and to prefer a monoanionic form in supramolecular association with other components. The aromaticity of the flat benzofuran residue plays an important role in directing either homo‐ or heteromolecular π–π stacking in the first three structures, while the occurrence of a chiral architecture directed by multiple hydrogen bonding is the dominant feature in the fourth.  相似文献   

5.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

6.
Coordination polymers (CPs) have attracted increasing interest in recent years. In this work, two new CPs, namely poly[[aquabis(2,2′‐bipyridine‐κ2N,N′){μ3‐5‐[(4‐carboxylatophenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O5}(μ‐formato‐κ3O:O,O′)dicadmium(II)] monohydrate], {[Cd2(C16H9O7)(HCO2)(C10H8N2)2(H2O)]·H2O}n ( 1 ), and poly[[(2,2′‐bipyridine‐κ2N,N′){μ3‐5‐[(4‐carboxylphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O5}manganese(II)] sesquihydrate], {[Mn(C16H10O7)(C10H8N2)]·1.5H2O}n ( 2 ), have been prepared using the tricarboxylic acid 5‐[(4‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylic acid and 2,2′‐bipyridine under hydrothermal conditions. CP 1 displays a two‐dimensional layer structure which is further extended into a three‐dimensional (3D) supramolecular structure via intermolecular π–π interactions, while CP 2 shows a different 3D supramolecular structure extended from one‐dimensional ladder chains by intermolecular π–π interactions. In addition, the solid‐state luminescence spectra of 1 and 2 were studied at room temperature.  相似文献   

7.
Yellow–orange tetraaquabis(3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κN3)cadmium(II) dihydrate, [Cd(C8HN4O2)2(H2O)4]·2H2O, (I), and yellow tetraaquabis(3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κN3)cadmium(II) 1,4‐dioxane solvate, [Cd(C8HN4O2)2(H2O)4]·C4H8O2, (II), contain centrosymmetric mononuclear Cd2+ coordination complex molecules in different conformations. Dark‐red poly[[decaaquabis(μ2‐3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κ2N:N′)bis(μ2‐3‐cyano‐4‐dicyanomethylene‐1H‐pyrrole‐2,5‐diolato‐κ2N:N′)tricadmium] hemihydrate], [Cd3(C8HN4O2)2(C8N4O2)2(H2O)10]·0.5H2O, (III), has a polymeric two‐dimensional structure, the building block of which includes two cadmium cations (one of them located on an inversion centre), and both singly and doubly charged anions. The cathodoluminescence spectra of the crystals are different and cover the wavelength range from UV to red, with emission peaks at 377 and 620 nm for (III), and at 583 and 580 nm for (I) and (II), respectively.  相似文献   

8.
Because of their versatile coordination modes and strong coordination ability for metals, triazole ligands can provide a wide range of possibilities for the construction of metal–organic frameworks. Three transition‐metal complexes, namely bis(μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato)‐κ3N 2,O :N 13N 1:N 2,O‐bis[triamminenickel(II)] tetrahydrate, [Ni2(C3HN3O2)2(NH3)6]·4H2O, (I), catena‐poly[[[diamminediaquacopper(II)]‐μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato‐κ3N 1:N 4,O‐[diamminecopper(II)]‐μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato‐κ3N 4,O :N 1] dihydrate], {[Cu2(C3HN3O2)2(NH3)4(H2O)2]·2H2O}n , (II), (μ‐5‐amino‐1,2,4‐triazol‐1‐ide‐3‐carboxylato‐κ2N 1:N 2)di‐μ‐hydroxido‐κ4O :O‐bis[triamminecobalt(III)] nitrate hydroxide trihydrate, [Co2(C3H2N4O2)(OH)2(NH3)6](NO3)(OH)·3H2O, (III), with different structural forms have been prepared by the reaction of transition metal salts, i.e. NiCl2, CuCl2 and Co(NO3)2, with 1,2,4‐triazole‐3‐carboxylic acid or 3‐amino‐1,2,4‐triazole‐5‐carboxylic acid hemihydrate in aqueous ammonia at room temperature. Compound (I) is a dinuclear complex. Extensive O—H…O, O—H…N and N—H…O hydrogen bonds and π–π stacking interactions between the centroids of the triazole rings contribute to the formation of the three‐dimensional supramolecular structure. Compound (II) exhibits a one‐dimensional chain structure, with O—H…O hydrogen bonds and weak O—H…N, N—H…O and C—H…O hydrogen bonds linking anions and lattice water molecules into the three‐dimensional supramolecular structure. Compared with compound (I), compound (III) is a structurally different dinuclear complex. Extensive N—H…O, N—H…N, O—H…N and O—H…O hydrogen bonding occurs in the structure, leading to the formation of the three‐dimensional supramolecular structure.  相似文献   

9.
The title compounds, trans‐bis(1H‐benzimidazole‐2‐carboxylato‐κ2N3,O)bis(ethanol‐κO)cadmium(II), [Cd(C8H5N2O2)2(C2H6O)2], (I), and trans‐bis(1H‐benzimidazole‐κN3)bis(1H‐benzimidazole‐2‐carboxylato‐κ2N3,O)nickel(II), [Ni(C8H5N2O2)2(C7H6N2)2], (II), are hydrogen‐bonded supramolecular complexes. In (I), the CdII ion is six‐coordinated by two O atoms from two ethanol molecules, and by two O and two N atoms from two bidentate benzimidazole‐2‐carboxylate (HBIC) ligands, giving a distorted octahedral geometry. The combination of O—H...O and N—H...O hydrogen bonds results in two‐dimensional layers parallel to the ab plane. In (II), the six‐coordinated NiII atom, which lies on an inversion centre, shows a similar distorted octahedral geometry to the CdII ion in (I); two benzimidazole molecules occupy the axial sites and the equatorial plane contains two chelating HBIC ligands. Pairs of N—H...O hydrogen bonds between pairs of HBIC anions connect adjacent NiII coordination units to form a one‐dimensional chain parallel to the a axis. Moreover, these one‐dimensional chains are further linked via N—H...O hydrogen bonds between HBIC anions and benzimidazole molecules to generate a three‐dimensional supramolecular framework. The two compounds show quite different supramolecular networks, which may be explained by the fact that different co‐ligands occupy the axial sites in the coordination units.  相似文献   

10.
Copper(II) bis(4,4,4‐trifluoro‐1‐phenylbutane‐1,3‐dionate) complexes with pyridin‐2‐one (pyon), 3‐hydroxypyridine (hpy) and 3‐hydroxypyridin‐2‐one (hpyon) were prepared and the solid‐state structures of (pyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)] or [Cu(tfpb‐κ2O ,O ′)2(pyon‐κO )], (I), bis(pyridin‐3‐ol‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)2] or [Cu(tfpb‐κ2O ,O ′)2(hpy‐κO )2], (II), and bis(3‐hydroxypyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO2)2] or [Cu(tfpb‐κ2O ,O ′)2(hpyon‐κO )2], (III), were determined by single‐crystal X‐ray analysis. The coordination of the metal centre is square pyramidal and displays a rare example of a mutual cis arrangement of the β‐diketonate ligands in (I) and a trans‐octahedral arrangement in (II) and (III). Complex (II) presents the first crystallographic evidence of κO‐monodentate hpy ligation to the transition metal enabling the pyridine N atom to participate in a two‐dimensional hydrogen‐bonded network through O—H…N interactions, forming a graph‐set motif R 22(7) through a C—H…O interaction. Complex (III) presents the first crystallographic evidence of monodentate coordination of the neutral hpyon ligand to a metal centre and a two‐dimensional hydrogen‐bonded network is formed through N—H…O interactions facilitated by C—H…O interactions, forming the graph‐set motifs R 22(8) and R 22(7).  相似文献   

11.
The two title proton‐transfer compounds, 5‐methylimidazolium 3‐carboxy‐4‐hydroxybenzenesulfonate, C4H7N2+·C7H5O6S, (I), and bis(5‐methylimidazolium) 3‐carboxylato‐4‐hydroxybenzenesulfonate, 2C4H7N2+·C7H5O6S2−, (II), are each organized into a three‐dimensional network by a combination of X—H...O (X = O, N or C) hydrogen bonds, and π–π and C—H...π interactions.  相似文献   

12.
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring.  相似文献   

13.
Three novel coordination polymers (CPs), namely poly[[di‐μ‐aqua‐bis{μ4‐3,3′‐[(5‐carboxylato‐1,3‐phenylene)bis(oxy)]dibenzoato‐κ5O1:O1′,O3:O5:O5′}bis(1,10‐phenanthroline‐κ2N,N′)trinickel(II)] dimethylformamide 1.5‐solvate trihydrate], {[Ni3(C21H11O8)2(C12H8N2)2(H2O)2]·1.5C3H7NO·3H2O}n, (I), poly[[di‐μ‐aqua‐bis{μ4‐3,3′‐[(5‐carboxylato‐1,3‐phenylene)bis(oxy)]dibenzoato‐κ5O1:O1′,O3:O5:O5′}bis(1,10‐phenanthroline‐κ2N,N′)tricobalt(II)] diethylamine disolvate tetrahydrate], {[Co3(C21H11O8)2(C12H8N2)2(H2O)2]·2C2H7N·4H2O}n, (II), and catena‐poly[[aqua(1,10‐phenanthroline‐κ2N,N′)zinc(II)]‐μ‐5‐(3‐carboxyphenoxy)‐3,3′‐oxydibenzoato‐κ2O1:O3], [Zn(C21H12O8)(C12H8N2)(H2O)]n, (III), have been synthesized by the reaction of different metal ions (Ni2+, Co2+ and Zn2+), 3,3′‐[(5‐carboxy‐1,3‐phenylbis(oxy)]dibenzoic acid (H3cpboda) and 1,10‐phenanthroline (phen) under solvothermal conditions. All the CPs were characterized by elemental analysis, single‐crystal and powder X‐ray diffraction, FT–IR spectroscopy and thermogravimetric analysis. Complexes (I) and (II) have isomorphous structures, featuring similar linear trinuclear structural units, in which the central NiII/CoII atom is located on an inversion centre with a slightly distorted octahedral [NiO6]/[CoO6] geometry. This comprises four carboxylate O‐atom donors from two cpboda3? ligands and two O‐atom donors from bridging water molecules. The terminal NiII/CoII groups are each connected to the central NiII/CoII cation through two μ1,3‐carboxylate groups from two cpboda3? ligands and one water bridge, giving rise to linear trinuclear [M32‐H2O)2(RCOO)4] (M = Ni2+/Co2+) secondary building units (SBUs) and the SBUs develop two‐dimensional‐networks parallel to the (100) plane via cpboda3? ligands with new (32·4)2(32·83·9)2(34·42.82·94·103) topological structures. Zinc complex (III) displays one‐dimensional coordination chains and the five‐coordinated Zn atom forms a distorted square‐pyramidal [ZnO3N2] geometry, which is completed by two carboxylate O‐atom donors from two distinct Hcpboda2? ligands, one O atom from H2O and two N atoms from a chelating phen ligand. Magnetically, CP (I) shows weak ferromagnetic interactions involving the carboxylate groups, and bridging water molecules between the nickel(II) ions, and CP (II) shows antiferromagnetic interactions between the Co2+ ions. The solid‐state luminescence properties of CP (III) were examined at ambient temperature and the luminescence sensing of Cr2O72?/CrO42? anions in aqueous solution for (III) has also been investigated.  相似文献   

14.
A novel supramolecular framework, catena‐poly[[[aqua(2‐phenylquinoline‐4‐carboxylato‐κO)silver(I)]‐μ‐4,4′‐bipyridine‐κ2N:N′] dihydrate], {[Ag(C16H10NO2)(C10H8N2)(H2O)]·2H2O}n, has been synthesized and structurally characterized. The AgI centres are four‐coordinated and bridged by 4,4′‐bipyridine (4,4′‐bipy) ligands to form a one‐dimensional Ag–bipy chain. The Ag–bipy chains are further linked together by intermolecular O—H...O and O—H...N hydrogen‐bonding interactions between adjacent chains, resulting in a three‐dimensional framework.  相似文献   

15.
The title compounds, bis(μ‐3,5‐dichloro‐2‐oxidobenzoato)‐κ3O1,O2:O23O2:O1,O2‐bis[(3,5‐dichloro‐2‐hydroxybenzoic acid‐κO1)(1,10‐phenanthroline‐κ2N,N′)copper(II)], [Cu2(C7H2Cl2O3)2(C7H4Cl2O3)2(C12H8N2)2], (I), and bis(μ‐5‐chloro‐2‐oxidobenzoato)‐κ3O1,O2:O13O1:O1,O2‐bis[(5‐chloro‐2‐hydroxybenzoic acid‐κO1)(1,10‐phenanthroline‐κ2N,N′)copper(II)] ethanol monosolvate, [Cu2(C7H3ClO3)2(C7H5ClO3)2(C12H8N2)2]·C2H6O, (II), contain centrosymmetric dinuclear complex molecules in which Cu2+ cations are surrounded by a chelating 1,10‐phenanthroline ligand, a chelating 3,5‐dichloro‐2‐oxidobenzoate or 5‐chloro‐2‐oxidobenzoate anionic ligand and a monodentate 3,5‐dichloro‐2‐hydroxybenzoic acid or 5‐chloro‐2‐hydroxybenzoic acid ligand. The chelating benzoate ligand also bridges to the other Cu2+ ion in the molecule, but the O atom involved in the bridge is different in the two complexes, being the phenolate O atom in (I) and a carboxylate O atom in (II). The bridge completes a 4+1+1 axially elongated tetragonal–bipyramidal arrangement about each Cu2+ cation. The complex molecules of both compounds are linked into one‐dimensional supramolecular chains through O—H...O hydrogen bonds.  相似文献   

16.
Two tricarbonyl complexes of rhenium(I) and manganese(I) coordinated by the ligand 2‐{[2‐(1H‐imidazol‐4‐yl)ethyl]iminomethyl}‐5‐methylphenolate are reported, viz. fac‐tricarbonyl(2‐{[2‐(1H‐imidazol‐4‐yl‐κN3)ethyl]iminomethyl‐κN}‐5‐methylphenolato‐κO)rhenium(I) methanol monosolvate, [Re(C16H14N3O4)(CO)3]·CH3OH, (I), and fac‐tricarbonyl(2‐{[2‐(1H‐imidazol‐4‐yl‐κN3)ethyl]iminomethyl‐κN}‐5‐methylphenolato‐κO)manganese(I), fac‐[Mn(C16H14N3O4)(CO)3], (II), display facial coordination in a distorted octahedral environment. The crystal structure of (I) is stabilized by O—H...O, N—H...O and C—H...O hydrogen‐bond interactions, while that of (II) is stabilized by N—H...O hydrogen‐bond interactions only. These interactions result in two‐dimensional networks and π–π stacking for both structures.  相似文献   

17.
In recent years, N‐heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N‐atom donors, as well as O‐atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two‐dimensional coordination polymer, namely poly[[μ3‐2,2′‐(1,2‐phenylene)bis(4‐carboxy‐1H‐imidazole‐5‐carboxylato)‐κ6O4,N3,N3′,O4′:O5:O5′]manganese(II)], [Mn(C16H8N4O8)]n or [Mn(H4Phbidc)]n, has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six‐coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two‐dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H…O hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

18.
The complexes [2‐(1H‐imidazol‐4‐yl‐κN3)ethylamine‐κN]bis(tri‐tert‐butoxysilanethiolato‐κS)cobalt(II), [Co(C12H27O3SSi)2(C5H9N3)], and [2‐(1H‐imidazol‐4‐yl‐κN3)ethylamine‐κN]bis(tri‐tert‐butoxysilanethiolato‐κS)zinc(II), [Zn(C12H27O3SSi)2(C5H9N3)], are isomorphous. The central ZnII/CoII ions are surrounded by two S atoms from the tri‐tert‐butoxysilanethiolate ligand and by two N atoms from the chelating histamine ligand in a distorted tetrahedral geometry, with two intramolecular N—H...O hydrogen‐bonding interactions between the histamine NH2 groups and tert‐butoxy O atoms. Molecules of the complexes are joined into dimers via two intermolecular bifurcated N—H...(S,O) hydrogen bonds. The ZnII atom in [(1H‐imidazol‐4‐yl‐κN3)methanol]bis(tri‐tert‐butoxysilanethiolato‐κ2O,S)zinc(II), [Zn(C12H27O3SSi)2(C4H6N2O)], is five‐coordinated by two O and two S atoms from the O,S‐chelating silanethiolate ligand and by one N atom from (1H‐imidazol‐4‐yl)methanol; the hydroxy group forms an intramolecular hydrogen bond with sulfur. Molecules of this complex pack as zigzag chains linked by N—H...O hydrogen bonds. These structures provide reference details for cysteine‐ and histidine‐ligated metal centers in proteins.  相似文献   

19.
In the title complex, mer‐diaqua[2,6‐dioxo‐1,2,3,6‐tetrahydropyrimidine‐4‐carboxylato(2−)]bis(1H‐imidazole‐κN3)cobalt(II), [Co(C5H2N2O4)(C3H4N2)2(H2O)2], the CoII ion is coordinated by a deprotonated N atom and the carboxylate O atom of the orotate ligand, two imidazole N atoms and two aqua ligands in a distorted octahedral geometry. The title complex exists as discrete doubly hydrogen‐bonded dimers, and a three‐dimensional network of O—H...O and N—H...O hydrogen bonds and weak π–π interactions is responsible for crystal stabilization.  相似文献   

20.
Coordination polymers are a thriving class of functional solid‐state materials and there have been noticeable efforts and progress toward designing periodic functional structures with desired geometrical attributes and chemical properties for targeted applications. Self‐assembly of metal ions and organic ligands is one of the most efficient and widely utilized methods for the construction of CPs under hydro(solvo)thermal conditions. 2‐(Pyridin‐3‐yl)‐1H‐imidazole‐4,5‐dicarboxylate (HPIDC2−) has been proven to be an excellent multidentate ligand due to its multiple deprotonation and coordination modes. Crystals of poly[aquabis[μ3‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ5N1,O5:N3,O4:N2]copper(II)dicopper(I)], [CuIICuI2(C10H5N3O4)2(H2O)]n, (I), were obtained from 2‐(pyridin‐3‐yl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PIDC) and copper(II) chloride under hydrothermal conditions. The asymmetric unit consists of one independent CuII ion, two CuI ions, two HPIDC2− ligands and one coordinated water molecule. The CuII centre displays a square‐pyramidal geometry (CuN2O3), with two N,O‐chelating HPIDC2− ligands occupying the basal plane in a trans geometry and one O atom from a coordinated water molecule in the axial position. The CuI atoms adopt three‐coordinated Y‐shaped coordinations. In each [CuN2O] unit, deprotonated HPIDC2− acts as an N,O‐chelating ligand, and a symmetry‐equivalent HPIDC2− ligand acts as an N‐atom donor via the pyridine group. The HPIDC2− ligands in the polymer serve as T‐shaped 3‐connectors and adopt a μ3‐κ2N,O2N′,O′:κN′′‐coordination mode, linking one CuII and two CuI cations. The Cu cations are arranged in one‐dimensional –Cu1–Cu2–Cu3– chains along the [001] direction. Further crosslinking of these chains by HPIDC2− ligands along the b axis in a –Cu2–HPIDC2−–Cu3–HPIDC2−–Cu1– sequence results in a two‐dimensional polymer in the (100) plane. The resulting (2,3)‐connected net has a (123)2(12)3 topology. Powder X‐ray diffraction confirmed the phase purity for (I), and susceptibilty measurements indicated a very weak ferromagnetic behaviour. A thermogravimetric analysis shows the loss of the apical aqua ligand before decomposition of the title compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号