首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel amphiphilic A14B7 multimiktoarm star copolymers composed of 14 poly(ε‐caprolactone) (PCL) arms and 7 poly(acrylic acid) (PAA) arms with β‐cyclodextrin (β‐CD) as core moiety were synthesized by the combination of controlled ring‐opening polymerization (CROP) and atom transfer radical polymerization (ATRP). 14‐Arm star PCL homopolymers (CDSi‐SPCL) were first synthesized by the CROP of CL using per‐6‐(tert‐butyldimethylsilyl)‐β‐CD as the multifunctional initiator in the presence of Sn(Oct)2 at 125 °C. Subsequently, the hydroxyl end groups of CDSi‐SPCL were blocked by acetyl chloride. After desilylation of the tert‐butyldimethylsilyl ether groups from the β‐CD core, 7 ATRP initiating sites were introduced by treating with 2‐bromoisobutyryl bromide, which further initiated ATRP of tert‐butyl acrylate (tBA) to prepare well‐defined A14B7 multimiktoarm star copolymers [CDS(PCL‐PtBA)]. Their molecular structures and physical properties were in detail characterized by 1H NMR, SEC‐MALLS, and DSC. The selective hydrolysis of tert‐butyl ester groups of the PtBA block gave the amphiphilic A14B7 multimiktoarm star copolymers [CDS(PCL‐PAA)]. These amphiphilic copolymers could self‐assemble into multimorphological aggregates in aqueous solution, which were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2961–2974, 2010  相似文献   

2.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

3.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

4.
A series of well‐defined three‐arm star poly(ε‐caprolactone)‐b‐poly(acrylic acid) copolymers having different block lengths were synthesized via the combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, three‐arm star poly(ε‐caprolactone) (PCL) (Mn = 2490–7830 g mol?1; Mw/Mn = 1.19–1.24) were synthesized via ROP of ε‐caprolactone (ε‐CL) using tris(2‐hydroxyethyl)cynuric acid as three‐arm initiator and stannous octoate (Sn(Oct)2) as a catalyst. Subsequently, the three‐arm macroinitiator transformed from such PCL in high conversion initiated ATRPs of tert‐butyl acrylate (tBuA) to construct three‐arm star PCL‐b‐PtBuA copolymers (Mn = 10,900–19,570 g mol?1; Mw/Mn = 1.14–1.23). Finally, the three‐arm star PCL‐b‐PAA copolymer was obtained via the hydrolysis of the PtBuA segment in three‐arm star PCL‐b‐PtBuA copolymers. The chain structures of all the polymers were characterized by gel permeation chromatography, proton nuclear magnetic resonance (1H NMR), and Fourier transform infrared spectroscopy. The aggregates of three‐arm star PCL‐b‐PAA copolymer were studied by the determination of critical micelles concentration and transmission electron microscope. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
Well‐defined amphiphilic polymethylene‐b‐poly(ε‐caprolactone)‐b‐poly(acrylic acid) (PM‐b‐PCL‐b‐PAA) triblock copolymers were synthesized via a combination of polyhomologation, ring‐opening polymerization (ROP), and atom transfer radical polymerization (ATRP). First, hydroxyl‐terminated polymethylenes (PM‐OH; Mn = 1100 g mol?1; Mw/Mn = 1.09) were produced by polyhomologation followed by oxidation. Then, the PM‐b‐PCL (Mn = 10,000 g mol?1; Mw/Mn = 1.27) diblock copolymers were synthesized via ROP of ε‐caprolactone using PM‐OH as macroinitiator and stannous octanoate (Sn(Oct)2) as a catalyst. Subsequently, the macroinitiator transformed from PM‐b‐PCL in high conversion initiated ATRPs of tert‐butyl acrylate (tBA) to construct PM‐b‐PCL‐b‐PtBA triblock copolymers (Mn = 11,000–14,000 g mol?1; Mw/Mn = 1.24–1.26). Finally, the PM‐b‐PCL‐b‐PAA triblock copolymers were obtained via the hydrolysis of the PtBA segment in PM‐b‐PCL‐b‐PtBA triblock copolymers. The chain structures of all the polymers were characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Porous films of such triblock copolymers were fabricated by static breath‐figure method and observed by scanning electron microscope. The aggregates of PM‐b‐PCL‐b‐PAA triblock copolymer were studied by transmission electron microscope. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Using core‐first strategy, the amphiphilic A4B4 star‐shaped copolymers [poly(ethylene oxide)]4[poly(ε‐caprolactone)]4 [(PEO)4(PCL)4], [poly(ethylene oxide)]4[poly(styrene)]4 [(PEO)4(PS)4], and [poly(ethylene oxide)]4[poly(tert‐butyl acrylate)]4 [(PEO)4(PtBA)4] were synthesized by mechanisms transformation combining with thiol‐ene reaction. First, using a designed multifunctional mikto‐initiator with four active hydroxyl groups and four allyl groups, the four‐armed star‐shaped polymers (PEO‐Ph)4/(OH)4 with four active hydroxyl groups at core position were obtained by sequential ring‐opening polymerization (ROP) of ethylene oxide monomers, capping reaction of living oxyanion with benzyl chloride, and transformation of allyl groups into hydroxyl groups by thiol‐ene reaction. Then, the A4B4 star‐shaped copolymers (PEO)4(PS)4 or (PEO)4(PtBA)4 were obtained by atom transfer radical polymerization (ATRP) of styrene or tert‐butyl acrylate (tBA) monomers from macroinitiator of (PEO‐Ph)4/(Br)4, which was obtained by esterification of (PEO‐Ph)4/(OH)4 with 2‐bromoisobutyryl bromide. The A4B4 star‐shaped copolymers (PEO)4(PCL)4 were also obtained by ROP of ε‐caprolactopne monomers from macroinitiator of (PEO‐Ph)4/(OH)4. The target copolymers and intermediates were characterized by size‐exclusion chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectroscopy, and nuclear magnetic resonance in detail. This synthetic route might be a versatile one to various AnBn (n ≥ 3) star‐shaped copolymers with defined structure and compositions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4572–4583  相似文献   

7.
Two samples of ABCD 4‐miktoarm star quarterpolymer with A = polystyrene (PS), B = poly(ε‐caprolactone) (PCL), C = poly(methyl methacrylate) (PMMA) or poly(tert‐butyl acrylate) (PtBA), and D = poly(ethylene glycol) (PEG) were prepared using click reaction strategy (Cu(I)‐catalyzed Huisgen [3 + 2] reaction). Thus, first, predefined block copolymers of different polymerization routes, PS‐b‐PCL with azide and PMMA‐b‐PEG and PtBA‐b‐PEG copolymers with alkyne functionality, were synthesized and then these blocks were combined together in the presence of Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst in DMF at room temperature to give the target 4‐miktoarm star quarterpolymers. The obtained miktoarm star quarter polymers were characterized by GPC, NMR, and DSC measurements. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1218–1228, 2008  相似文献   

8.
A novel miktofunctional initiator ( 1 ), 2‐hydroxyethyl 3‐[(2‐bromopropanoyl)oxy]‐2‐{[(2‐bromopropanoyl)oxy]methyl}‐2‐methyl‐propanoate, possessing one initiating site for ring‐opening polymerization (ROP) and two initiating sites for atom transfer radical polymerization (ATRP), was synthesized in a three‐step reaction sequence. This initiator was first used in the ROP of ?‐caprolactone, and this led to a corresponding polymer with secondary bromide end groups. The obtained poly(?‐caprolactone) (PCL) was then used as a macroinitiator for the ATRP of tert‐butyl acrylate or methyl methacrylate, and this resulted in AB2‐type PCL–[poly(tert‐butyl acrylate)]2 or PCL–[poly(methyl methacrylate)]2 miktoarm star polymers with controlled molecular weights and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.23) via the ROP–ATRP sequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2313–2320, 2004  相似文献   

9.
Novel and well‐defined amphiphilic dendrimer‐star copolymer poly(ε‐caprolactone)‐block‐(poly(2‐(2‐methoxyethoxy)ethylmethacrylate‐co‐oligo(ethylene glycol) methacrylate))2 with Y‐shaped arms were synthesized by the combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). The investigation of thermal properties and the analysis of crystalline morphology indicate that the high‐branched structure of dendrimer‐star copolymers with Y‐shaped arms and the presence of amorphous P(MEO2MA‐co‐OEGMA) segments together led to the complete destruction of crystallinity of the PCL segments in the dendrimer‐star copolymer. In addition, the hydrophilicity–hydrophobicity transition of the dendrimer‐star copolymer film can be achieved by altering the external temperatures. The amphiphilic copolymers can self‐assemble into spherical nanomicelles in water. Because the lower critical solution temperature of the copolymers can be adjusted by varying the ratio of MEO2MA and OEGMA, the tunable thermosensitive properties can be observed by transmittance, dynamic laser light scattering, and transmission electron microscopy (TEM). The release rate of model drug chlorambucil from the micelles can be effectively controlled by changing the external temperatures, which indicates that these unique high‐branched amphiphilic copolymers have the potential applications in biomedical field. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Biodegradable and biocompatible PCL‐g‐PEG amphiphilic graft copolymers were prepared by combination of ROP and “click” chemistry via “graft onto” method under mild conditions. First, chloro‐functionalized poly(ε‐caprolactone) (PCL‐Cl) was synthesized by the ring‐opening copolymerization of ε‐caprolactone (CL) and α‐chloro‐ε‐caprolactone (CCL) employing scandium triflate as high‐efficient catalyst with near 100% monomer conversion. Second, the chloro groups of PCL‐Cl were quantitatively converted into azide form by NaN3. Finally, copper(I)‐catalyzed cycloaddition reaction was carried out between azide‐functionalized PCL (PCL‐N3) and alkyne‐terminated poly(ethylene glycol) (A‐PEG) to give PCL‐g‐PEG amphiphilic graft copolymers. The composition and the graft architecture of the copolymers were characterized by 1H NMR, FTIR, and GPC analyses. These amphiphilic graft copolymers could self‐assemble into sphere‐like aggregates in aqueous solution with diverse diameters, which decreased with the increasing of grafting density. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
The preparation of 3‐miktoarm star terpolymers using nitroxide mediated radical polymerization (NMP), ring opening polymerization (ROP), and click reaction [3 + 2] are carried out by applying two types of one‐pot technique. In the first one‐pot technique, NMP of styrene (St), ROP of ε‐caprolactone (ε‐CL), and [3 + 2] click reaction (between azide end‐functionalized poly(ethylene glycol) (PEG‐N3)/or azide end‐functionalized poly(methyl methacrylate) (PMMA‐N3) and alkyne) are carried out in the presence of 2‐(hydroxymethyl)‐2‐methyl‐3‐oxo‐3‐(2‐phenyl‐2‐(2,2,6,6‐tetramethylpiperidin‐1‐yloxy)ethoxy) propyl pent‐4‐ynoate, 2 , as an initiator for 48 h at 125 °C (one‐pot/one‐step). As a second technique, NMP of St and ROP of ε‐CL were conducted using 2 as an initiator for 20 h at 125 °C, and subsequently PEG‐N3 or azide end‐functionalized poly(tert‐butyl acrylate (PtBA‐N3) was added to the polymerization mixture, followed by a click reaction [3 + 2] for 24 h at room temperature (one‐pot/two‐step). The 3‐miktoarm star terpolymers, PEG‐poly(ε‐caprolactone)(PCL)‐PS, PtBA‐PCL‐PS and PMMA‐PCL‐PS, were recovered by a simple precipitation in methanol without further purification. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3588–3598, 2007  相似文献   

12.
Two samples of dendrimer‐like miktoarm star terpolymers: (poly(tert‐butyl acrylate))3‐(polystyrene‐poly(ε‐caprolactone))3 (PtBA)3‐(PS‐PCL)3, and (PS)3‐(PtBA‐poly(ethylene glycol)3 were prepared using efficient Cu catalyzed Huisgen cycloaddition (click reaction). As a first step, azido‐terminated 3‐arm star polymers PtBA and PS as core (A) were synthesized by atom transfer radical polymerization (ATRP) of tBA and St, respectively, followed by the conversion of bromide end group to azide. Secondly, PS‐PCL and PtBA‐PEG block copolymers with alkyne group at the junction as peripheral arms (B‐C) were obtained via multiple living polymerization mechanisms such as nitroxide mediated radical polymerization (NMP) of St, ring opening polymerization (ROP) of ε‐CL, ATRP of tBA. Thus obtained core and peripheral arms were linked via click reaction to give target (A)3‐(B‐C)3 dendrimer‐like miktoarm star terpolymers. (PtBA)3‐(PS‐PCL)3 and (PS)3‐(PEG‐PtBA)3 have been characterized by GPC, DSC, AFM, and SAXS measurements. (PtBA)3‐(PS‐PCL)3 did not show any self‐organization with annealing due to the miscibility of the peripheral arm segments. In contrast, the micro‐phase separation of the peripheral arm segments in (PS)3‐(PtBA‐PEG)3 resulted in self‐organized phase‐separated morphology with a long period of ~ 13 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5916–5928, 2008  相似文献   

13.
Novel biocompatible, biodegradable, four‐arm star, triblock copolymers containing a hydrophobic poly(ε‐caprolactone) (PCL) segment, a hydrophilic poly(oligo(ethylene oxide)475 methacrylate) (POEOMA475) segment and a thermoresponsive poly(di(ethylene oxide) methyl ether methacrylate) (PMEO2MA) segment were synthesized by a combination of controlled ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, a four‐arm PCL macroinitiator [(PCL‐Br)4] for ATRP was synthesized by the ROP of ε‐caprolactone (CL) catalyzed by stannous octoate in the presence of pentaerythritol as the tetrafunctional initiator followed by esterification with 2‐bromoisobutyryl bromide. Then, sequential ATRP of oligo(ethylene oxide) methacrylate (OEOMA475, Mn = 475) and di(ethylene oxide) methyl ether methacrylate) (MEO2MA) were carried out using the (PCL‐Br)4 tetrafunctional macroinitiator, in different sequence, resulting in preparation of (PCL‐b‐POEOMA475‐b‐PMEO2MA)4 and (PCL‐b‐PMEO2MA‐b‐POEOMA475)4 star triblock copolymers. These amphiphilic copolymers can self‐assemble into spherical micelles in aqueous solution at room temperature. The thermal responses of the polymeric micelles were investigated by dynamic light scattering and ultraviolet spectrometer. The properties of the two series of copolymers are quite different and depend on the sequence distribution of each block along the arms of the star. The (PCL‐b‐POEOMA475‐b‐PMEO2MA)4 star copolymer, with the thermoresponsive PMEO2MA segment on the periphery, can undergo reversible sol‐gel transitions between room temperature (22 °C) and human body temperature (37 °C). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
H‐shaped quintopolymer containing different five blocks: poly(ε‐caprolactone) (PCL), polystyrene (PS), poly(ethylene glycol) (PEG), and poly(methyl methacrylate) (PMMA) as side chains and poly(tert‐butyl acrylate) (PtBA) as a main chain was simply prepared from a click reaction between azide end‐functionalized PCL‐PS‐PtBA 3‐miktoarm star terpolymer and PEG–PMMA‐block copolymer with alkyne at the junction point, using Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as a catalyst in DMF at room temperature for 20 h. The H‐shaped quintopolymer was obtained with a number–average molecular weight (Mn) around 32,000 and low polydispersity index (Mw/Mn) 1.20 as determined by GPC analysis in THF using PS standards. The click reaction efficiency was calculated to have 60% from 1H NMR spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4459–4468, 2008  相似文献   

15.
A five‐arm star‐shaped poly(ethylene oxide) (PEO) with terminal bromide groups was used as a macroinitiator for the atom transfer radical polymerization of tert‐butyl acrylate (tBA), resulting in five‐arm star‐shaped poly(ethylene oxide)‐block‐poly(tert‐butyl acrylate) block copolymers. The polymerization proceeded in a controlled way using a copper(I)bromide/pentamethyl diethylenetriamine catalytic system in acetonitrile as solvent. The hydrolysis of the tBA blocks of the amphiphilic star‐shaped PEO‐b‐PtBA block copolymer resulted in dihydrophilic star structures. The encapsulation of the star‐block copolymers and their release properties in acid environment have been followed by UV‐spectroscopy and color changes, using the dye methyl orange as a hydrophilic guest molecule. Characterization of the structures has been done by 1H NMR, size exclusion chromatography, MALDI‐TOF, and differential scanning calorimetry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 650–660, 2008  相似文献   

16.
A series of well‐defined θ‐shaped copolymers composed of polystyrene (PS) and poly(ε‐caprolactone) (PCL) with controlled molecular weight and narrow molecular weight distribution have been successfully synthesized without any purification procedure by the combination of atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP), and the “click” chemistry. The synthetic process involves two steps: (1) synthesis of AB2 miktoarm star copolymers, which contain one PCL chain terminated with two acetylene groups and two PS chains with two azido groups at their one end, (α,α′‐diacetylene‐PCL) (ω‐azido‐PS)2, by ROP, ATRP, and the terminal group transformation; (2) intramolecular cyclization of AB2 miktoarm star copolymers to produce well‐defined pure θ‐shaped copolymers using “click” chemistry under high dilution. The 1H NMR, FTIR, and gel permeation chromatography techniques were applied to characterize the chemical structures of the resultant intermediates and the target polymers. Their thermal behavior was investigated by DSC. The mobility decrease of PCL chain across PS ring in the theta‐shaped copolymers restricts the crystallization ability of PCL segment. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2620–2630, 2009  相似文献   

17.
The inverse star block copolymer, (poly(ε‐caprolactone)‐b‐polystyrene)2core‐(poly(ε‐caprolactone)‐b‐polystyrene)2, [(PCL‐PS)2core‐(PCL‐PS)2] has been successfully prepared by combination of atom transfer radical polymerization (ATRP), ring opening polymerization (ROP), and “Click Chemistry.” The synthesis includes the following five steps: (1) synthesis of a heterofunctional initiator with two ATRP initiating groups and two hydroxyl groups; (2) formation of (Br‐PS)2core‐(OH)2 via ATRP of styrene; (3) preparation of the (PCL‐PS)2core‐(OH)2 through “click” reaction of the α‐propargyl, ω‐acetyl terminated PCL with (N3‐PS)2core‐(OH)2 which was prepared by transformation of the terminal bromine groups in (Br‐PS)2core‐(OH)2 into azide groups; (4) the ROP of CL using (PCL‐PS)2core‐(OH)2 as macroinitiator to form (PCL‐PS)2core‐(PCL‐OH)2; and (5) preparation of the (PCL‐PS)2core‐(PCL‐PS)2 through the ATRP of styrene using (PCL‐PS)2core‐(PCL‐Br)2 as macroinitiator which was prepared by reaction of the terminal hydroxyl groups at the end of the PCL chains with 2‐bromoisobutyryl bromide. The characterization data support structures of the inverse star block copolymer and the intermediates. The differential scanning calorimeter results and polarized optical microscope observation showed that the intricate structure of the inverse star block copolymer greatly restricted the movement of the PS segments and PCL segments, resulted in the increase of the glass transition temperature of PS segments and the decrease of crystallization ability of PCL segments. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7757–7772, 2008  相似文献   

18.
A series of well‐defined amphiphilic triblock copolymers, poly(ethylene glycol)‐b‐poly(tert‐butyl acrylate)‐b‐poly(2‐hydroxyethyl methacrylate) (PEG‐b‐PtBA‐b‐PHEMA), were synthesized via successive atom transfer radical polymerization (ATRP). ATRP of tBA was first initiated by PEG‐Br macroinitiator using CuBr/N,N,N′,N″,N′″‐pentamethyldiethylenetriamine as catalytic system to give PEG‐b‐PtBA diblock copolymer. This copolymer was then used as macroinitiator to initiate ATRP of HEMA, which afforded the target triblock copolymer, PEG‐b‐PtBA‐b‐PHEMA. The critical micelle concentrations of obtained amphiphilic triblock copolymers were determined by fluorescence spectroscopy using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of formed aggregates were investigated by transmission electron microscopy and dynamic light scattering, respectively. Finally, an acid‐sensitive PEG‐b‐PtBA‐b‐P(HEMA‐CAD) prodrug via cis‐aconityl linkage between doxorubicin and hydroxyls of triblock copolymers with a high drug loading content up to 38%, was prepared to preliminarily explore the application of triblock copolymer in drug delivery. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Per‐2,3‐acetyl‐β‐cyclodextrin with seven primary hydroxyl groups was synthesized by selective modification and used as multifunctional initiator for the ring‐opening polymerization of ε‐caprolactone (CL). Well‐defined β‐cyclodextrin‐centered seven‐arm star poly(ε‐caprolactone)s (CDSPCLs) with narrow molecular weight distributions (≤1.15) have been successfully prepared in the presence of Sn(Oct)2 at 120 °C. The molecular weight of CDSPCLs was characterized by end group 1H NMR analyses and size‐exclusion chromatography (SEC), which could be well controlled by the molar ratio of the monomer to the initiator. Furthermore, amphiphilic seven‐arm star poly(ε‐caprolactone‐b‐ethylene glycol)s (CDSPCL‐b‐PEGs) were synthesized by the coupling reaction of CDSPCLs with carboxyl‐terminated mPEGs. 1H NMR and SEC analyses confirmed the expected star block structures. Differential scanning calorimetry analyses suggested that the melting temperature (Tm), the crystallization temperature (Tc), and the crystallinity degree (Xc) of CDSPCLs all increased with the increasing of the molecular weight, and were lower than that of the linear poly(ε‐caprolactone). As for CDSPCL‐b‐PEGs, the Tc and Tm of the PCL blocks were significantly influenced by the PEG segments in the copolymers. Moreover, these amphiphilic star block copolymers could self‐assemble into spherical micelles with the particle size ranging from 10 to 40 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6455–6465, 2008  相似文献   

20.
We report an efficient way, sequential double click reactions, for the preparation of brush copolymers with AB block‐brush architectures containing polyoxanorbornene (poly (ONB)) backbone and poly(ε‐caprolactone) (PCL), poly(methyl methacrylate) (PMMA) or poly(tert‐butyl acrylate) (PtBA) side chains: poly(ONB‐g‐PMMA)‐b‐poly(ONB‐g‐PCL) and poly(ONB‐g‐PtBA)‐b‐poly(ONB‐g‐PCL). The living ROMP of ONB affords the synthesis of well‐defined poly(ONB‐anthracene)20b‐poly (ONB‐azide)5 block copolymer with anthryl and azide pendant groups. Subsequently, well‐defined linear alkyne end‐functionalized PCL (PCL‐alkyne), maleimide end‐functionalized PMMA (PMMA‐MI) and PtBA‐MI were introduced onto the block copolymer via sequential azide‐alkyne and Diels‐Alder click reactions, thus yielding block‐brush copolymers. The molecular weight of block‐brush copolymers was measured via triple detection GPC (TD‐GPC) introducing the experimentally calculated dn/dc values to the software. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号