首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title cobalt(II) coordination polymer, poly[[diaquacobalt(II)]‐μ4‐3,3′‐(p‐phenylene)diacrylato], [Co(C12H8O4)(H2O)2]n, was obtained by reaction of Co(NO3)2·6H2O and 3,3′‐(p‐phenylene)diacrylic acid (H2L) under hydrothermal conditions. Each CoII cation sits on a centre of inversion and is hexacoordinated by six O‐atom donors in an octahedral geometry. The CoII centres are connected by four centrosymmetric L2− anions, resulting in a three‐dimensional framework structure. The coordinated water molecules and carboxylate O atoms form hydrogen‐bond interactions, stabilizing the structure of the three‐dimensional framework. Topologically, the framework represents a rare example of the three‐dimensional 4‐connected CdSO4 network type. The metal cations and the organic ligand both show in‐plane coordination with respect to the extended structure.  相似文献   

2.
In the title compound, catena‐poly[[aquazinc(II)]‐μ3‐tyrosinato], [Zn(C9H7NO3)(H2O)]n, each Zn atom has a distorted square‐pyramidal geometry comprised of three O atoms and one N atom from three tyrosinate (tyr) ligands, and one aqua ligand. Two inversion‐related Zn2+ ions are bridged by two O atoms from the phenolate groups of two tyr ligands to form a centrosymmetric dimeric unit, which can be described as a planar Zn2O2 four‐membered ring. These repeating dimeric units are arranged along the c axis to give a one‐dimensional chain coordination polymer, in which the tyr ligand adopts an unusual chelating/bridging coordination mode.  相似文献   

3.
The open‐chain polyether‐bridged flexible ligand 1,2‐bis[2‐(1H‐1,3‐imidazol‐1‐ylmethyl)phenoxy]ethane (L) has been used to create two two‐dimensional coordination polymers under hydrothermal reaction of L with CdII or CoII, in the presence of benzene‐1,4‐dicarboxylic acid (H2bdc). In poly[[(μ2‐benzene‐1,4‐dicarboxylato){μ‐1,2‐bis[2‐(1H‐1,3‐imidazol‐1‐ylmethyl)phenoxy]ethane}cadmium(II)] dihydrate], {[Cd(C8H4O4)(C22H22N4O2)]·2H2O}n, (I), and the cobalt(II) analogue {[Co(C8H4O4)(C22H22N4O2)]·2H2O}n, (II), the CdII and CoII cations are six‐coordinated by four carboxylate O atoms from two different bdc2− dianions in a chelating mode and two N atoms from two distinct L ligands. The metal ions, bdc2− dianions and L ligands each sit across crystallographic twofold axes. The bdc2− coordination mode and the coordinating orientation of the L ligand play an important role in constructing the novel two‐dimensional framework. Complexes (I) and (II) are threefold interpenetrated two‐dimensional frameworks; their structures are almost isomorphous, while the bond lengths, angles and hydrogen bonds are different in (I) and (II).  相似文献   

4.
The hydro­thermal reaction of cobalt(II) chloride with trimesate (3,5‐di­carboxy­benzoate) ions in aqueous solution gives the novel title complex, [Co(C9H5O6)2(H2O)4]. The CoII ion lies on an inversion centre and is octahedrally coordinated to two trimesate anions and four water mol­ecules. Hydro­gen bonds ensure the three‐dimensional architecture of the structure.  相似文献   

5.
The self‐assembly of three crystallographically distinct fumar­ate ions, two unique cobalt(II) ions and two unique o‐phen­;anthroline mol­ecules results in a two‐dimensional polymeric structure with the formula [Co2(C4H2O4)2(C12H8N2)2]n, namely di‐μ‐fumatato‐bis(o‐phenanthroline)­dicobalt(II). The Co atoms are at the nodes of a two‐dimensional array linked by coordinated fumarate ligands. Each Co atom is coordinated in a distorted octahedral manner to four fumarate O atoms and two N atoms from the chelating phenanthroline ligands.  相似文献   

6.
The reaction of nickel(II) nitrate with terephthalic acid and 2,2′‐bi­pyridine in di­methyl­form­amide solution gives the title complex, [Ni(C10H8N2)(H2O)4](C8H4O4). The NiII ion is octahedrally coordinated to one 2,2′‐bi­pyridine and four water mol­ecules and does not coordinate to the terephthalate anion. Hydro­gen bonds between the terephthalate anions and the [Ni(2,2′‐bipy)(H2O)4]2+ cations produce a two‐dimensional hydrogen‐bonding architecture with double sheets.  相似文献   

7.
Poly[[μ4‐4,4′‐bipyridazine‐μ5‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C8H6N4)]·H2O}n, (I), and poly[[aqua‐μ4‐pyridazino[4,5‐d]pyridazine‐μ3‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C6H4N4)(H2O)]·H2O}n, (II), possess three‐ and two‐dimensional polymeric structures, respectively, supported by N‐tetradentate coordination of the organic ligands [Ag—N = 2.208 (3)–2.384 (3) Å] and O‐pentadentate coordination of the sulfate anions [Ag—O = 2.284 (3)–2.700 (2) Å]. Compound (I) is the first structurally examined complex of the new ligand 4,4′‐bipyridazine; it is based upon unprecedented centrosymmetric silver–pyridazine tetramers with tetrahedral AgN2O2 and trigonal–bipyramidal AgN2O3 coordination of two independent AgI ions. Compound (II) adopts a typical dimeric silver–pyridazine motif incorporating two kinds of square‐pyramidal AgN2O3 AgI ions. The structure exhibits short anion–π interactions involving noncoordinated sulfate O atoms [O...π = 3.041 (3) Å].  相似文献   

8.
In catena‐poly[[aqua[1,3‐bis(pyridine‐3‐ylmethoxy)benzene‐κN]zinc(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Zn(C8H4O4)(C18H16N2O2)(H2O)]n, each ZnII centre is tetrahedrally coordinated by two O atoms of bridging carboxylate groups from two benzene‐1,4‐dicarboxylate anions (denoted L2−), one O atom from a water molecule and one N atom from a 1,3‐bis[(pyridin‐3‐yl)methoxy]benzene ligand (denoted bpmb). (Aqua)O—H...N hydrogen‐bonding interactions induce the formation of one‐dimensional helical [Zn(L)(bpmb)(H2O)]n chains which are interlinked through (aqua)O—H...O hydrogen‐bonding interactions, producing two‐dimensional corrugated sheets.  相似文献   

9.
The ZnII compounds, μ‐4,4′‐ethylenedibenzoato‐bis[acetatoaqua(dipyrido[3,2‐a:2′,3′‐c]phenazine)zinc(II)] dihydrate, [Zn2(C2H3O2)2(C16H10O4)(C18H10N4)2(H2O)2]·2H2O, (I), and catena‐poly[[[aqua(pyrazino[2,3‐f][1,10]phenanthroline)zinc(II)]‐μ‐4,4′‐ethylenedibenzoato] N,N‐dimethylformamide hemisolvate], {[Zn(C16H10O4)(C14H8N4)(H2O)]·0.5C3H7NO}n, (II), display very different structures because of the influence of the N‐donor chelating ligands. In (I), the coordination geometry of each ZnII centre is distorted octahedral, involving two N atoms from one dipyrido[3,2‐a:2′,3′‐c]phenazine (L1) ligand, and four O atoms from one bis‐chelating acetate anion, one bridging 4,4′‐ethylenedibenzoate (bpea) ligand and one water molecule. Adjacent ZnII atoms are bridged by one bpea ligand to form a dinuclear complex, and the dinuclear species is centrosymmetric. Two types of π–π interactions between neighbouring dinuclear species have been found: one is between the L1 ligands, and the second is between the L1 and bpea ligands. In this way, an interesting two‐dimensional supramolecular layer is formed. The layers are further linked by O—H...O and O—H...N hydrogen bonds, generating a three‐dimensional supramolecular network. In (II), each ZnII atom is square‐pyramidally coordinated by two N atoms from one pyrazino[2,3‐f][1,10]phenanthroline ligand, three O atoms from two different bpea ligands and one water molecule. The two bpea dianions are situated across inversion centres. The bpea dianions bridge neighbouring ZnII centres, giving a one‐dimensional chain structure in the ab plane. As in (I), two types of π–π interactions between neighbouring chains complete a three‐dimensional supramolecular structure. The results indicate that the structures of the N‐donor chelating ligands are the dominant factors determining the final supramolecular structures of the two compounds.  相似文献   

10.
The title compound, [Ca(C16H12O4)(H2O)6]·H2O, adopts a conformation about the central C—C bond that places the two carboxylate groups in an anti orientation. The crystal consists of layers of two‐dimensional arrays of 2,3‐di­phenyl­succinate dianions which are linked by bridging Ca2+ cations. The unit cell contains two Ca2+ cations in an unusual four‐membered Ca—O—Ca—O ring in which the bridging O atoms belong to water mol­ecules rather than carboxyl­ates, i.e. poly­[[[di‐μ‐aqua‐bis­[penta­aqua­calcium(II)]]‐μ‐(meso‐2,3‐di­phenyl­succinato‐O:O′)] succinate dihydrate].  相似文献   

11.
In order to explore new metal coordination polymers and to search for new types of ferroelectrics among hybrid coordination polymers, two manganese dicyanamide complexes, poly[tetramethylammonium [di‐μ3‐dicyanamido‐κ6N1:N3:N5‐tri‐μ2‐dicyanamido‐κ6N1:N5‐dimanganese(II)]], {[(CH3)4N][Mn2(NCNCN)5]}n, (I), and catena‐poly[bis(butyltriphenylphosphonium) [[(dicyanamido‐κN1)manganese(II)]‐di‐μ2‐dicyanamido‐κ4N1:N5]], {[(C4H9)(C6H5)3P]2[Mn(NCNCN)4]}n, (II), were synthesized in aqueous solution. In (I), one MnII cation is octahedrally coordinated by six nitrile N atoms from six anionic dicyanamide (dca) ligands, while the second MnII cation is coordinated by four nitrile N atoms and two amide N atoms from six anionic dca ligands. Neighbouring MnII cations are linked together by μ‐1,5‐ and μ‐1,3,5‐bridging dca anions to form a three‐dimensional polymeric structure. The anionic framework exhibits a solvent‐accessible void of 289.8 Å3, amounting to 28.0% of the total unit‐cell volume. Each of the cavities in the network is occupied by only one tetramethylammonium cation. In (II), each MnII cation is octahedrally coordinated by six nitrile N atoms from six dca ligands. Neighbouring MnII cations are linked together by double dca bridges to form a one‐dimensional polymeric chain, and C—H...N hydrogen‐bonding interactions are involved in the formation of the one‐dimensional layer structure.  相似文献   

12.
The structures of five metal complexes containing the 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate dianion illustrate the remarkable coordinating versatility of this ligand and the great structural diversity of its complexes. In tetraaquaberyllium 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate, [Be(H2O)4](C7H2O6), (I), the ions are linked by eight independent O—H...O hydrogen bonds to form a three‐dimensional hydrogen‐bonded framework structure. Each of the ions in hydrazinium(2+) diaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)calcate, (N2H6)[Ca(C7H2O6)2(H2O)2], (II), lies on a twofold rotation axis in the space group P2/c; the anions form hydrogen‐bonded sheets which are linked into a three‐dimensional framework by the cations. In bis(μ‐4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)bis[tetraaquamanganese(II)] tetrahydrate, [Mn2(C7H2O6)2(H2O)8]·4H2O, (III), the metal ions and the organic ligands form a cyclic centrosymmetric Mn2(C7H2O6)2 unit, and these units are linked into a complex three‐dimensional framework structure containing 12 independent O—H...O hydrogen bonds. There are two independent CuII ions in tetraaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)copper(II), [Cu(C7H2O6)(H2O)4], (IV), and both lie on centres of inversion in the space group P; the metal ions and the organic ligands form a one‐dimensional coordination polymer, and the polymer chains are linked into a three‐dimensional framework containing eight independent O—H...O hydrogen bonds. Diaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)cadmium monohydrate, [Cd(C7H2O6)(H2O)2]·H2O, (V), forms a three‐dimensional coordination polymer in which the organic ligand is coordinated to four different Cd sites, and this polymer is interwoven with a complex three‐dimensional framework built from O—H...O hydrogen bonds.  相似文献   

13.
Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene‐1,4‐dicarboxylic acid (H2BDC) and pyridine (py) with ZnII or CoII yielded two new coordination polymers, namely, poly[(μ4‐benzene‐1,4‐dicarboxylato‐κ4O:O′:O′′:O′′′)(pyridine‐κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena‐poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ3O:O′:O′′)bis(pyridine‐κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the ZnII cation is five‐coordinated by four carboxylate O atoms from four BDC2− ligands and one pyridine N atom in a distorted square‐pyramidal coordination geometry. Four carboxylate groups bridge two ZnII ions to form centrosymmetric paddle‐wheel‐like Zn22‐COO)4 units, which are linked by the benzene rings of the BDC2− ligands to generate a two‐dimensional layered structure. The two‐dimensional layer is extended into a three‐dimensional supramolecular structure with the help of π–π stacking interactions between the aromatic rings. Compound (II) has a one‐dimensional double‐chain structure based on Co22‐COO)2 units. The CoII cations are bridged by BDC2− ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC2− ligands, one water O atom and two pyridine N atoms. Interchain O—H…O hydrogen‐bonding interactions link these chains to form a three‐dimensional supramolecular architecture.  相似文献   

14.
The CoII atom in bis(5‐aminotetrazole‐1‐acetato)tetraaquacobalt(II), [Co(C3H4N5O2)2(H2O)4], (I), is octahedrally coordinated by six O atoms from two 5‐aminotetrazole‐1‐acetate (atza) ligands and four water molecules. The molecule has a crystallographic centre of symmetry located at the CoII atom. The molecules of (I) are interlinked by hydrogen‐bond interactions, forming a two‐dimensional supramolecular network structure in the ac plane. The CdII atom in catena‐poly[[cadmium(II)]‐bis(μ‐5‐aminotetrazole‐1‐acetato], [Cd(C3H4N5O2)2]n, (II), lies on a twofold axis and is coordinated by two N atoms and four O atoms from four atza ligands to form a distorted octahedral coordination environment. The CdII centres are connected through tridentate atza bridging ligands to form a two‐dimensional layered structure extending along the ab plane, which is further linked into a three‐dimensional structure through hydrogen‐bond interactions.  相似文献   

15.
In the title complex, mer‐diaqua[2,6‐dioxo‐1,2,3,6‐tetrahydropyrimidine‐4‐carboxylato(2−)]bis(1H‐imidazole‐κN3)cobalt(II), [Co(C5H2N2O4)(C3H4N2)2(H2O)2], the CoII ion is coordinated by a deprotonated N atom and the carboxylate O atom of the orotate ligand, two imidazole N atoms and two aqua ligands in a distorted octahedral geometry. The title complex exists as discrete doubly hydrogen‐bonded dimers, and a three‐dimensional network of O—H...O and N—H...O hydrogen bonds and weak π–π interactions is responsible for crystal stabilization.  相似文献   

16.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

17.
Co(C2(COO)2)(H2O)4 · 2 H2O and Co(C2(COO)2)(H2O)2: Two Co‐ordination Polymers of the Acetylenedicarboxylate Dianion By reaction of CoCO3 with an aqueous solution of acetylenedicarboxylic acid and subsequent crystallisation single‐crystals of Co(C2(COO)2)(H2O)4 · 2 H2O were obtained (P21/a, Z = 2). In the solid state structure cobalt is octahedrally surrounded by four water molecules and two oxygen atoms of the carboxylate anions. These octahedra are connected to chains by the dicarboxylates. Already at ambient conditions Co(C2(COO)2)(H2O)4 · 2 H2O looses four water molecules to give Co(C2(COO)2)(H2O)2 (isotypic to Mn[C2(COO)2] · 2 H2O, C2/c, Z = 4). The cobalt cation is now octahedrally co‐ordinated by two water molecules and four oxygen atoms of the dicarboxylate ligands, which connect the Co octahedra to a three dimensional network. Thermoanalytical investigations show another mass loss at about 200 °C, which leads to non‐crystalline products. Measurements of the magnetic susceptibilities result in the expected behaviour for Co2+ in an octahedral co‐ordination (high spin, 4T1 ground state). The effective magnetic moment at room temperature is neff = 5.51 μB.  相似文献   

18.
The one‐dimensional coordination polymer catena‐poly[diaqua(sulfato‐κO)copper(II)]‐μ2‐glycine‐κ2O:O′], [Cu(SO4)(C2H5NO2)(H2O)2]n, (I), was synthesized by slow evaporation under vacuum of a saturated aqueous equimolar mixture of copper(II) sulfate and glycine. On heating the same blue crystal of this complex to 435 K in an oven, its aspect changed to a very pale blue and crystal structure analysis indicated that it had transformed into the two‐dimensional coordination polymer poly[(μ2‐glycine‐κ2O:O′)(μ4‐sulfato‐κ4O:O′:O′′:O′′)copper(II)], [Cu(SO4)(C2H5NO2)]n, (II). In (I), the CuII cation has a pentacoordinate square‐pyramidal coordination environment. It is coordinated by two water molecules and two O atoms of bridging glycine carboxylate groups in the basal plane, and by a sulfate O atom in the apical position. In complex (II), the CuII cation has an octahedral coordination environment. It is coordinated by four sulfate O atoms, one of which bridges two CuII cations, and two O atoms of bridging glycine carboxylate groups. In the crystal structure of (I), the one‐dimensional polymers, extending along [001], are linked via N—H...O, O—H...O and bifurcated N—H...O,O hydrogen bonds, forming a three‐dimensional framework. In the crystal structure of (II), the two‐dimensional networks are linked via bifurcated N—H...O,O hydrogen bonds involving the sulfate O atoms, forming a three‐dimensional framework. In the crystal structures of both compounds, there are C—H...O hydrogen bonds present, which reinforce the three‐dimensional frameworks.  相似文献   

19.
Two new two‐dimensional coordination polymers, poly­[[[aqua(2,2′‐bi­pyridine‐κ2N,N′)manganese(II)]‐μ3p‐phenyl­enebis­(oxy­acet­ato)‐κ3O:O′:O′′] dihydrate], {[Mn(C10H8O6)(C10H8N2)(H2O)]·2H2O}n, (I), and poly­[[di‐μ‐aqua‐bis­[aqua­sodium(I)]]‐μ4p‐phenyl­enebis­(oxy­acetato)‐κO:O′,O′′:O′′′,O′′′′:O′′′′′], [Na2(C10H8O6)(H2O)4]n, (II), have been synthesized and characterized by X‐ray single‐crystal diffraction. In (I), there are two 1,4‐BDOA2− [p‐phenyl­enebis­(oxy­acetate) or, more commonly, benzene‐1,4‐dioxy­acetate] ligands, each lying about inversion centres, while in (II), there is one such ligand and it also has crystallographically imposed inversion symmetry. In (I), each MnII atom displays an octahedral MnN2O4 configuration, defined by three carboxyl O atoms of different 1,4‐BDOA2− groups, two N atoms of one 2,2′‐bi­pyridine ligand and one water mol­ecule. In (II), each NaI atom is octahedrally coordinated by one ether O atom, two carboxyl O atoms of different 1,4‐BDOA2− ligands and three water mol­ecules. The metal ions in complexes (I) and (II) are bridged by 1,4‐BDOA2− groups into two‐dimensional layer structures. Furthermore, three‐dimensional supramolecular networks are constructed via hydrogen bonds in (I) and (II), and by additional π–π stacking interactions in (I).  相似文献   

20.
In the title compound, {[Co2(C14H8O4)2(C10H8N2)2(H2O)2]·2C14H10O4}n, each CoII ion is six‐coordinate in a slightly distorted octahedral geometry. Both CoII ions are located on twofold axes. One is surrounded by two O atoms from two biphenyl‐2,2′‐dicarboxylate (dpa) dianions, two N atoms from two 4,4′‐bipyridine (bpy) ligands and two water molecules, while the second is surrounded by four O atoms from two dpa dianions and two N atoms from two bpy ligands. The coordinated dpa dianion functions as a κ3‐bridge between the two CoII ions. One carboxylate group of a dpa dianion bridges two adjacent CoII ions, and one O atom of the other carboxylate group also chelates to a CoII ion. The CoII ions are bridged by dpa dianions and bpy ligands to form a chiral sheet. There are several strong intermolecular hydrogen bonds between the H2dpa solvent molecule and the chiral sheet, which result in a sandwich structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号