首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Metal selenates crystallize in many instances in isomorphic structures of the corresponding sulfates. Sodium magnesium selenate decahydrate, Na2Mg(SeO4)2·10H2O, and sodium magnesium selenate dihydrate, Na2Mg(SeO4)2·2H2O, were synthesized by preparing solutions of Na2SeO4 and MgSeO4·6H2O with different molar ratios. The structures contain different Mg octahedra, i.e. [Mg(H2O)6] octahedra in the decahydrate and [MgO4(H2O)2] octahedra in the dihydrate. The sodium polyhedra are also different, i.e. [NaO2(H2O)4] in the decahydrate and [NaO6(H2O)] in the dihydrate. The selenate tetrahedra are connected with the chains of Na polyhedra in the two structures. O—H…O hydrogen bonding is observed in both structures between the coordinating water molecules and selenate O atoms.  相似文献   

2.
Hexaaquamagnesium(II) sulfate pentahydrate, [Mg(H2O)6]SO4·5H2O, and hexaaquamagnesium(II) chromate(II) pentahydrate, [Mg(H2O)6][CrO4]·5H2O, are isomorphous, being composed of hexaaquamagnesium(II) octahedra, [Mg(H2O)6]2+, and sulfate (chromate) tetrahedral oxyanions, SO42− (CrO42−), linked by hydrogen bonds. There are two symmetry‐inequivalent centrosymmetric octahedra: M1 at (0, 0, 0) donates hydrogen bonds directly to the tetrahedral oxyanion, T1, at (0.405, 0.320, 0.201), whereas the M2 octahedron at (0, 0, ) is linked to the oxyanion via five interstitial water molecules. Substitution of CrVI for SVI leads to a substantial expansion of T1, since the Cr—O bond is approximately 12% longer than the S—O bond. This expansion is propagated through the hydrogen‐bonded framework to produce a 3.3% increase in unit‐cell volume; the greatest part of this chemically induced strain is manifested along the b* direction. The hydrogen bonds in the chromate compound mitigate ∼20% of the expected strain due to the larger oxyanion, becoming shorter (i.e. stronger) and more linear than in the sulfate analogue. The bifurcated hydrogen bond donated by one of the interstitial water molecules is significantly more symmetrical in the chromate analogue.  相似文献   

3.
Ferric sulfate trihydrate has been synthesized at 403 K under hydrothermal conditions. The structure consists of quadruple chains of [Fe2(SO4)3(H2O)3] parallel to [010]. Each quadruple chain is composed of equal proportions of FeO4(H2O)2 octahedra and FeO5(H2O) octahedra sharing corners with SO4 tetrahedra. The chains are joined to each other by hydrogen bonds. This compound is a new hydration state of Fe2(SO4)3·nH2O; minerals with n = 0, 5, 7.25–7.75, 9 and 11 are found in nature.  相似文献   

4.
The MgZrF6 · n H2O (n = 5, 2 and 0) compounds were studied by the methods of X‐ray diffraction and 19F, MAS 19F, and 1H NMR spectroscopy. At room temperature, the compound MgZrF6 · 5H2O has a monoclinic C‐centered unit cell and is composed of isolated chains of edge‐sharing ZrF8 dodecahedra reinforced with MgF2(H2O)4 octahedra and uncoordinated H2O molecules and characterized by a disordered system of hydrogen bonds. In the temperature range 259 to 255 K, a reversible monoclinic ? two‐domain triclinic phase transition is observed. The phase transition is accompanied with ordering of hydrogen atoms positions and the system of hydrogen bonds. The structure of MgZrF6 · 2H2O comprises a three‐dimensional framework consisting of chains of edge‐sharing ZrF8 dodecahedra linked to each other through MgF4(H2O)2 octahedra. The compound MgZrF6 belongs to the NaSbF6 type and is built from regular ZrF6 and MgF6 octahedra linked into a three‐dimensional framework through linear Zr–F–Mg bridges. The peaks in 19F MAS spectra were attributed to the fluorine structural positions. The motions of structural water molecules were studied by variable‐temperature 1H NMR spectroscopy.  相似文献   

5.
In the title salt, (C6H8N4)[Mn(C14H8O4)2(C6H6N4)2]·6H2O, the MnII atom lies on an inversion centre and is coordinated by four N atoms from two 2,2′‐biimidazole (biim) ligands and two O atoms from two biphenyl‐2,4′‐dicarboxylate (bpdc) anions to give a slightly distorted octahedral coordination, while the cation lies about another inversion centre. Adjacent [Mn(bpdc)2(biim)2]2− anions are linked via two pairs of N—H...O hydrogen bonds, leading to an infinite chain along the [100] direction. The protonated [H2biim]2+ moiety acts as a charge‐compensating cation and space‐filling structural subunit. It bridges two [Mn(bpdc)2(biim)2]2− anions through two pairs of N—H...O hydrogen bonds, constructing two R22(9) rings, leading to a zigzag chain in the [2] direction, which gives rise to a ruffled set of [H2biim]2+[Mn(bpdc)2(biim)2]2− moieties in the [01] plane. The water molecules give rise to a chain structure in which O—H...O hydrogen bonds generate a chain of alternating four‐ and six‐membered water–oxygen R42(8) and R66(12) rings, each lying about independent inversion centres giving rise to a chain along the [100] direction. Within the water chain, the (H2O)6 water rings are hydrogen bonded to two O atoms from two [Mn(bpdc)2(biim)2]2− anions, giving rise to a three‐dimensional framework.  相似文献   

6.
In the title compound, (5‐oxo‐3a,6a‐diphenyl­perhydro­imidazo[4,5‐d]imidazol‐2‐ylidene)oxonium hydrogen sulfate, C16H15N4O2+·HSO4, the asymmetric unit contains a hydrogen sulfate anion and a 3a,6a‐diphenyl­glycoluril oxonium cation. The hydrogen sulfate anion is joined to the oxonium cation via a strong O—H⋯O hydrogen bond (H⋯O = 1.69 Å). The crystal packing is mainly dominated by inter­actions involving the hydrogen sulfate anion. The diphenyl­glycoluril oxonium cations also self‐assemble through N—H⋯O hydrogen bonds, forming mol­ecular chains along the [001] vector. Four intra­molecular C—H⋯N hydrogen bonds are observed, having an S(5) motif.  相似文献   

7.
The novel title compound, poly­[octa‐μ‐aqua‐octa­aqua‐μ‐decavanadato‐hexalithium], contains [V10O28]6− polyanions with 2/m symmetry linked by centrosymmetric [Li6(H2O)16]6+ cation chains. The [V10O28]6− polyanions form a two‐dimensional network with [Li6(H2O)16]6+ chains via O‐polyanion–Li‐chain coordination, with Li—O bond lengths in the range 2.007 (5)–2.016 (5) Å. The hexalithium hexadecahydrate chain is composed of a centrosymmetric pair of LiO6 octahedra and four distorted LiO4 tetrahedra. Hydro­gen bonds occur between the polyanion and the Li‐based chains, and within the Li‐based chains.  相似文献   

8.
Metal Salts of Benzene‐1, 2‐di(sulfonyl)amine. 8. Lamellar Layers Based upon Hydrogen Bonding and π‐Stacking: Crystal Structures of the Complexes [Mg(H2O)6]Z2 and [Be(H2O)4]Z2�2 H2O, where Z is C6H4(SO2)2N The crystal structures of the title complexes (both triclinic, space group P1¯, Z = 1 for M = Mg, Z = 2 for M = Be) have been determined by low‐temperature X‐ray diffraction. They consist of non‐coordinating ortho‐benzenedisulfonimide anions and, respectively, inversion‐symmetric octahedral [Mg(H2O)6]2+ cations or tetrahedral [Be(H2O)4]2+ cations and two non‐coordinating water molecules. In both structures, all O—H hydrogen bond donor groups are used to associate the components into two‐dimensional assemblies comprising an internal polar lamella of metal cations, (SO2)2N groups and water molecules, and hydrophobic peripheral regions consisting of vertically protruding benzo rings. Carbocycles drawn alternatingly from adjacent layers form π‐stacking arrays, whereby the aromatic rings display intercentroid distances in the range 340—370 pm. Several short C—H ⃜O contacts, which may be viewed as weak hydrogen bonds, occur within and between the layers.  相似文献   

9.
The title organic–inorganic hybrid compound, [Co(C10H8N2O2)2(H2O)2]2[Mo8O26]·2H2O, consists of [Co(bpdo)2(H2O)2]2+ (bpdo is 2,2‐bipyridine N,N′‐dioxide) and ξ‐[Mo8O26]4− groups in a 2:1 ratio, plus two water solvent molecules. The independent Co atom in the cation is coordinated by four O atoms from two bpdo ligands and two water molecules, in a distorted octahedral geometry. The counter‐anions, built up around a symmetry center, are linked by solvent water molecules through O—H...O hydrogen bonds to generate two‐dimensional layers, which are in turn linked by coordinated water molecules from the cationic units through further O—H...O hydrogen bonds, forming a three‐dimensional supramolecular structure.  相似文献   

10.
The title compound, bis[di­aqua­bis­(ethyl­enedi­amine‐κ2N,N′)copper(II)­] hexa­cyano­iron(II) tetrahydrate, [Cu(C2H8N2)2(H2O)1.935]2[Fe(CN)6]·4H2O, was crystallized from an aqueous reaction mixture initially containing CuSO4, K3[Fe(CN)6] and ethyl­enedi­amine (en) in a 3:2:6 molar ratio. Its structure is ionic and is built up of two crystallographically different cations, viz. [Cu(en)2(H2O)2]2+ and [Cu(en)2(H2O)1.87]2+, there being a deficiency of aqua ligands in the latter, [Fe(CN)6]4− anions and disordered solvent water mol­ecules. All the metal atoms lie on centres of inversion. The Cu atom is octahedrally coordinated by two chelate‐bonded en mol­ecules [mean Cu—N = 2.016 (2) Å] in the equatorial plane, and by axial aqua ligands, showing very long distances due to the Jahn–Teller effect [mean Cu—O = 2.611 (2) Å]. In one of the cations, significant underoccupation of the O‐atom site is observed, correlated with the appearance of a non‐coordinated water mol­ecule. This is interpreted as the partial contribution of a hydrate isomer. The [Fe(CN)6]4− anions form quite regular octahedra, with a mean Fe—C distance of 1.913 (2) Å. The dominant intermolecular interactions are cation–anion O—H⋯N hydrogen bonds and these inter­actions form layers parallel to (001).  相似文献   

11.
Synthesis, Crystal Structure, and Thermal Decomposition of Mg(H2O)6[B12H12] · 6 H2O By reaction of an aqueous solution of the free acid (H3O)2[B12H12] with MgCO3 and subsequent isothermic evaporation of the resulting solution to dryness, colourless, bead‐shaped single crystals of the dodecahydrate of magnesium dodecahydro closo‐dodecaborate Mg(H2O)6[B12H12] · 6 H2O (cubic, F4132; a = 1643.21(9) pm, Z = 8) emerge. The crystal structure is best described as a NaTl‐type arrangement in which the centers of gravity of the quasi‐icosahedral [B12H12]2— anions (d(B—B) = 178—180 pm, d(B—H) = 109 pm) occupy the positions of Tl while the Mg2+ cations occupy the Na+ positions. A direct coordinative influence of the [B12H12]2— units at the Mg2+ cations is however not noticeable. The latter are octahedrally coordinated by six water molecules forming isolated hexaaqua complex cations [Mg(H2O)6]2+ (d(Mg—O) = 206 pm, 6×). In addition, six “zeolitic” water molecules are located in the crystal structure for the formation of a strong O—Hδ+···δ—O‐hydrogen bridge‐bonding system. The evidence of weak B—Hδ—···δ+H—O‐hydrogen bonds between water molecules and anionic [B12H12]2— clusters is also considered. Investigations on the dodecahydrate Mg[B12H12] · 12 H2O (≡ Mg(H2O)6[B12H12] · 6 H2O) by DTA/TG measurements showed that its dehydration takes place in two steps within a temperature range of 71 and 76 °C as well as at 202 °C, respectively. Thermal treatment eventually leads to the anhydrous magnesium dodecahydro closo‐dodecaborate Mg[B12H12].  相似文献   

12.
In the title compound, [RuII(C10H8N2)3]2[FeIII(CN)6]Cl·8H2O, the [Ru(bpy)3]2+ (bpy is 2,2′‐bi­pyridine) cations and water mol­ecules afford intriguing microporous honeycomb layers, while the [Fe(CN)6]3− anions and the remainder of the water mol­ecules form anionic sheets based on extensive hydrogen‐bonding networks. The cationic and anionic layers alternate along the c axis. The Fe atom in [Fe(CN)6]3− lies on an inversion centre and the axial cyano ligands are hydrogen bonded to the water mol­ecules encapsulated within the micropores [N⋯O = 2.788 (5) Å], giving an unusual interpenetration between the cationic and anionic layers. On the other hand, the in‐plane cyano ligands are relatively weakly hydrogen bonded to the water mol­ecules [N⋯O = 2.855 (7) and 2.881 (8) Å] within the anionic sheets.  相似文献   

13.
Polyoxometallates are capable of including transition metals in their crystal structures as either discrete cations or heteroatoms. The title compound crystallizes with triclinic symmetry and consists of a centrosymmetric [V10O28]6? anion, a trimeric {[Na(H2O)3][Ni(H2O)6][Na(H2O)3]}4+ cation, an [Ni(H2O)6]2+ cation and four water molecules of crystallization. The compound possesses two Ni atoms (each on independent inversion centres), one as a discrete cation and one in a disodium–nickel trimeric cation involved in the one‐dimensional polycation–polyanion hybrid polymer. The polymers are bound together via hydrogen bonds to the water mol­ecules and the nickel(II) hexahydrate cation. Several structures of decavanadate compounds having transition metal atoms, monovalent cations and [V10O28]6? anions in the ratio 2:2:1 have been reported previously. However, the present compound differs from these in its arrangement of monovalent cations and transition metal atoms.  相似文献   

14.
The title isomorphous compounds, tetra‐μ‐but‐2‐enoato‐bis[diaqua(but‐2‐enoato)dysprosium(III)]–2,6‐diaminopurine (1/2), [Dy2(C4H5O2)6(H2O)4]·2C5H6N6, and tetra‐μ‐but‐2‐enoato‐bis[diaqua(but‐2‐enoato)holmium(III)]–2,6‐diaminopurine (1/2), [Ho2(C4H5O2)6(H2O)4]·2C5H6N6, consist of [Ln(crot)3(H2O)2]2 dimers (crot is crotonate or but‐2‐enoate; Ln is the lanthanide cation), built up around inversion centres and completed by 2,6‐diaminopurine molecules. The lanthanide cation is coordinated by three chelating crotonate units and two water molecules. One of the chelating carboxylate groups acts also in a bridging mode sharing one O atom with both cations and the final result is a pair of DyO9 tricapped prismatic polyhedra linked to each other through a central (Dy—O)2 loop. A feature of the structures is the existence of a complex intermolecular interaction scheme involving two sets of tightly interlinked non‐intersecting one‐dimensional structures, one of them formed by the [Dy(crot)3(H2O)2]2 dimers (running along [100] and linked by O—H...O hydrogen bonds) and the second formed by 2,6‐diaminopurine molecules (evolving along [010] linked by N—H...N hydrogen bonds).  相似文献   

15.
The asymmetric unit of the title compound, dipotassium bis[hexaaquanickel(II)] tris(μ2‐methylenediphosphonato)tripalladium(II) hexahydrate, K2[Ni(H2O)6]2[Pd3{CH2(PO3)2}3]·6H2O, consists of half a {[Pd{CH2(PO3)2}]3}6− anion [one Pd atom (4e) and a methylene C atom (4e) occupy positions on a twofold axis] in a rare `handbell‐like' arrangement, with K+ and [Ni(H2O)6]2+ cations to form the neutral complex, completed by three solvent water molecules. The {[Pd{CH2(PO3)2}]3}6− units exhibit close Pd...Pd separations of 3.0469 (4) Å and are packed via intermolecular C—H...Pd hydrogen bonds. The [KO9] and [NiO6] units are assembled into sheets coplanar with (011) and stacked along the [100] direction. Within these sheets there are [K4Ni4O8] and [K2Ni2O4] loops. Successive alternation of the sheets and [Pd{CH2(PO3)2}]3 units parallel to [001] produces the three‐dimensional packing, which is also supported by a dense network of hydrogen bonds involving the solvent water molecules.  相似文献   

16.
In streptidinium sulfate monohydrate {systematic name: 1,1′‐[(1S,3R,4S,6R)‐2,4,5,6‐tetrahydroxycyclohexane‐1,3‐diyl]diguanidinium sulfate monohydrate}, C8H20N6O42+·SO42−·H2O, at 100 (2) K, the components are arranged in double helices based on hydrogen bonds. One helix contains streptidinium cations and the other contains disordered sulfate anions and solvent water molecules. The helices are linked into a three‐dimensional hydrogen‐bonded network by O—H...O and N—H...O hydrogen bonds.  相似文献   

17.
The crystal structure of the title compound, {(C3H12N2)[Mo3O10]·2H2O}n, is composed of [Mo3O10]2− anionic chains, propane‐1,3‐diammonium cations and solvent water molecules. The [Mo3O10]2− chain is constructed from edge‐sharing MoO6 octahedra. The protonated propane‐1,3‐diamine cations and solvent water molecules are located between the chains and are linked to the O atoms of the inorganic chains by hydrogen bonds.  相似文献   

18.
The title compound, tricaesium sodium iron(III) μ3‐oxido‐hexa‐μ2‐sulfato‐tris[aquairon(III)] pentahydrate, Cs2.91Na1.34Fe3+0.25[Fe3O(SO4)6(H2O)3]·5H2O, belongs to the family of Maus's salts, K5[Fe3O(SO4)6(H2O)3]·6H2O, which is based on the triaqua‐μ3‐oxido‐hexa‐μ‐sulfato‐triferrate(III) anion, [Fe3O(SO4)6(H2O)3]5−, with Fe in a characteristically distorted octahedral coordination environment, sharing a common corner via an oxide O atom. Cs in four different cation sites, Na in three different cation sites and five water molecules link the anions in three dimensions and set up a crystal structure in which those parts parallel to (001) and within 0.05 < z < 0.95 have a distinct trigonal pseudosymmetry, whereas the cation arrangement and bonding near z∼ 0 generate a clear‐cut noncentrosymmetric polar edifice with the monoclinic space group C2. The structure shows some cation disorder in the region near z ∼ , where one Na atom in octahedral coordination is partly substituted by Fe3+, and a Cs atom is substituted by small amounts of Na on a separate nearby site. One Na atom, located on a twofold axis at z = 0 and tetrahedrally coordinated by four sulfate O atoms of two [Fe3O(SO4)6(H2O)3]5− units, plays a key role in generating the noncentrosymmetric structure. Three of the seven different cation sites are on twofold axes (one Na+ site and two Cs+ sites), and all other atoms of the structure are in general positions.  相似文献   

19.
In methyl­aminium 4′,7‐dihydroxy­isoflavone‐3′‐sulfonate dihydrate, CH6N+·C15H9O7S·2H2O, 11 hydrogen bonds exist between the methyl­aminium cations, the iso­flavone‐3′‐sulfonate anions and the solvent water mol­ecules. In hexa­aqua­iron(II) bis­(4′,7‐diethoxy­isoflavone‐3′‐sulfonate) tetra­hydrate, [Fe(H2O)6](C19H17O7S)2·4H2O, 12 hydrogen bonds exist between the centrosymmetric [Fe(H2O)6]2+ cation, the isoflavone‐3′‐sulfonate anions and the solvent water mol­ecules. Additional π–π stacking inter­actions generate three‐dimensional supramolecular structures in both compounds.  相似文献   

20.
The title compound, hexa­ammonium tetra‐μ3‐selenido‐tetra­kis­(tri­cyano­molybdenum) hexahydrate, is isostructural with the Mo/S, W/S and W/Se analogues. The structure contains disordered cyclic hydrogen‐bonded [{(NH4)(H2O)}3]3+ cations and [Mo4Se4(CN)12]6? cluster anions with 3m symmetry. The cation assembly consists of alternating ammonium and water mol­ecules linked by N—H?O hydrogen bonds. The anion has a typical cubane cluster structure. The cations and anions are linked together by hydrogen bonds involving the terminal N atoms of the CN groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号