首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of the proton‐transfer compounds of 4,5‐dichlorophthalic acid (DCPA) with the aliphatic Lewis bases triethylamine, diethylamine, n‐butylamine and piperidine, namely triethylaminium 2‐carboxy‐4,5‐dichlorobenzoate, C6H16N+·C8H3Cl2O4, (I), diethylaminium 2‐carboxy‐4,5‐dichlorobenzoate, C4H12N+·C8H3Cl2O4, (II), bis(butanaminium) 4,5‐dichlorobenzene‐1,2‐dicarboxylate monohydrate, 2C4H12N+·C8H2Cl2O42−·H2O, (III), and bis(piperidinium) 4,5‐dichlorobenzene‐1,2‐dicarboxylate monohydrate, 2C5H12N+·C8H2Cl2O42−·H2O, (IV), have been determined at 200 K. All compounds have hydrogen‐bonding associations, giving discrete cation–anion units in (I) and linear chains in (II), while (III) and (IV) both have two‐dimensional structures. In (I), a discrete cation–anion unit is formed through an asymmetric R12(4) N+—H...O2 hydrogen‐bonding association, whereas in (II), chains are formed through linear N—H...O associations involving both aminium H‐atom donors. In compounds (III) and (IV), the primary N—H...O‐linked cation–anion units are extended into a two‐dimensional sheet structure via amide–carboxyl N—H...O and amide–carbonyl N—H...O interactions. In the 1:1 salts (I) and (II), the hydrogen 4,5‐dichlorophthalate anions are essentially planar with short intramolecular carboxyl–carboxyl O—H...O hydrogen bonds [O...O = 2.4223 (14) and 2.388 (2) Å, respectively]. This work provides a further example of the uncommon zero‐dimensional hydrogen‐bonded DCPA–Lewis base salt and the one‐dimensional chain structure type, while even with the hydrate structures of the 1:2 salts with the primary and secondary amines, the low dimensionality generally associated with 1:1 DCPA salts is also found.  相似文献   

2.
The structures of the 1:1 proton‐transfer compounds of 4,5‐dichlorophthalic acid with 8‐hydroxyquinoline, 8‐aminoquinoline and quinoline‐2‐carboxylic acid (quinaldic acid), namely anhydrous 8‐hydroxyquinolinium 2‐carboxy‐4,5‐dichlorobenzoate, C9H8NO+·C8H3Cl2O4, (I), 8‐aminoquinolinium 2‐carboxy‐4,5‐dichlorobenzoate, C9H9N2+·C8H3Cl2O4, (II), and the adduct hydrate 2‐carboxyquinolinium 2‐carboxy‐4,5‐dichlorobenzoate quinolinium‐2‐carboxylate monohydrate, C10H8NO2+·C8H3Cl2O4·C10H7NO2·H2O, (III), have been determined at 130 K. Compounds (I) and (II) are isomorphous and all three compounds have one‐dimensional hydrogen‐bonded chain structures, formed in (I) through O—H...Ocarboxyl extensions and in (II) through N+—H...Ocarboxyl extensions of cation–anion pairs. In (III), a hydrogen‐bonded cyclic R22(10) pseudo‐dimer unit comprising a protonated quinaldic acid cation and a zwitterionic quinaldic acid adduct molecule is found and is propagated through carboxylic acid O—H...Ocarboxyl and water O—H...Ocarboxyl interactions. In both (I) and (II), there are also cation–anion aromatic ring π–π associations. This work further illustrates the utility of both hydrogen phthalate anions and interactive‐group‐substituted quinoline cations in the formation of low‐dimensional hydrogen‐bonded structures.  相似文献   

3.
The crystal structures of the 1:1 proton‐transfer compounds of 4,5‐dichlorophthalic acid with the three isomeric monoaminobenzoic acids, namely the hydrate 2‐carboxyanilinium 2‐carboxy‐4,5‐dichlorobenzoate dihydrate, C7H8NO2+·C8H3Cl2O4·2H2O, (I), and the anhydrous salts 3‐carboxyanilinium 2‐carboxy‐4,5‐dichlorobenzoate, C7H8NO2+·C8H3Cl2O4, (II), and 4‐carboxyanilinium 2‐carboxy‐4,5‐dichlorobenzoate, C7H8NO2+·C8H3Cl2O4, (III), have been determined at 130 K. Compound (I) has a two‐dimensional hydrogen‐bonded sheet structure, while (II) and (III) are three‐dimensional. All three compounds feature sheet substructures formed through anilinium N+—H...Ocarboxyl and anion carboxylic acid O—H...Ocarboxyl interactions and, in the case of (I), additionally linked through the donor and acceptor associations of the solvent water molecules. However, (II) and (III) have additional lateral extensions of these substructures though cyclic R22(8) associations involving the carboxylic acid groups of the cations. Also, (II) and (III) have cation–anion π–π aromatic ring interactions. This work provides further examples illustrating the regular formation of network substructures in the 1:1 proton‐transfer salts of 4,5‐dichlorophthalic acid with the bifunctional aromatic amines.  相似文献   

4.
The structures of the 1:1 proton‐transfer compounds of isonipecotamide (piperidine‐4‐carboxamide) with 4‐nitrophthalic acid [4‐carbamoylpiperidinium 2‐carboxy‐4‐nitrobenzoate, C6H13N2O8+·C8H4O6, (I)], 4,5‐dichlorophthalic acid [4‐carbamoylpiperidinium 2‐carboxy‐4,5‐dichlorobenzoate, C6H13N2O8+·C8H3Cl2O4, (II)] and 5‐nitroisophthalic acid [4‐carbamoylpiperidinium 3‐carboxy‐5‐nitrobenzoate, C6H13N2O8+·C8H4O6, (III)], as well as the 2:1 compound with terephthalic acid [bis(4‐carbamoylpiperidinium) benzene‐1,2‐dicarboxylate dihydrate, 2C6H13N2O8+·C8H4O42−·2H2O, (IV)], have been determined at 200 K. All salts form hydrogen‐bonded structures, viz. one‐dimensional in (II) and three‐dimensional in (I), (III) and (IV). In (I) and (III), the centrosymmetric R22(8) cyclic amide–amide association is found, while in (IV) several different types of water‐bridged cyclic associations are present [graph sets R42(8), R43(10), R44(12), R33(18) and R64(22)]. The one‐dimensional structure of (I) features the common `planar' hydrogen 4,5‐dichlorophthalate anion, together with enlarged cyclic R33(13) and R43(17) associations. In the structures of (I) and (III), the presence of head‐to‐tail hydrogen phthalate chain substructures is found. In (IV), head‐to‐tail primary cation–anion associations are extended longitudinally into chains through the water‐bridged cation associations, and laterally by piperidinium–carboxylate N—H...O and water–carboxylate O—H...O hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen‐bonded structures. An additional example of cation–anion association with this cation is also shown in the asymmetric three‐centre piperidinium–carboxylate N—H...O,O′ interaction in the first‐reported structure of a 2:1 isonipecotamide–carboxylate salt.  相似文献   

5.
In 2‐amino‐6‐methylpyridin‐1‐ium 2‐carboxy‐3,4,5,6‐tetrachlorobenzoate, C6H9N2+·C8HCl4O4, there are two perpendicular chains of hydrogen‐bonded ions, one arising from the interaction between 2‐carboxy‐3,4,5,6‐tetrachlorobenzoate ions and the other from the interaction between the 2‐amino‐6‐methylpyridin‐1‐ium and 2‐carboxy‐3,4,5,6‐tetrachlorobenzoate ions. These chains combine to form a two‐dimensional network of hydrogen‐bonded ions. Cocrystals of bis(2‐amino‐3‐methylpyridin‐1‐ium) 3,4,5,6‐tetrachlorophthalate–3,4,5,6‐tetrachlorophthalic acid (1/1), 2C6H9N2+·C8Cl4O42−·C8H2Cl4O4, form finite aggregates of hydrogen‐bonded ions. π–π interactions are observed between 2‐amino‐3‐methylpyridin‐1‐ium cations. Both structures exhibit the characteristic R22(8) motif as a result of the hydrogen bonding between the 2‐aminopyridinium and carboxylate units.  相似文献   

6.
In order to examine the preferred hydrogen‐bonding pattern of various uracil derivatives, namely 5‐(hydroxymethyl)uracil, 5‐carboxyuracil and 5‐carboxy‐2‐thiouracil, and for a conformational study, crystallization experiments yielded eight different structures: 5‐(hydroxymethyl)uracil, C5H6N2O3, (I), 5‐carboxyuracil–N,N‐dimethylformamide (1/1), C5H4N2O4·C3H7NO, (II), 5‐carboxyuracil–dimethyl sulfoxide (1/1), C5H4N2O4·C2H6OS, (III), 5‐carboxyuracil–N,N‐dimethylacetamide (1/1), C5H4N2O4·C4H9NO, (IV), 5‐carboxy‐2‐thiouracil–N,N‐dimethylformamide (1/1), C5H4N2O3S·C3H7NO, (V), 5‐carboxy‐2‐thiouracil–dimethyl sulfoxide (1/1), C5H4N2O3S·C2H6OS, (VI), 5‐carboxy‐2‐thiouracil–1,4‐dioxane (2/3), 2C5H4N2O3S·3C6H12O3, (VII), and 5‐carboxy‐2‐thiouracil, C10H8N4O6S2, (VIII). While the six solvated structures, i.e. (II)–(VII), contain intramolecular S(6) O—H…O hydrogen‐bond motifs between the carboxy and carbonyl groups, the usually favoured R22(8) pattern between two carboxy groups is formed in the solvent‐free structure, i.e. (VIII). Further R22(8) hydrogen‐bond motifs involving either two N—H…O or two N—H…S hydrogen bonds were observed in three crystal structures, namely (I), (IV) and (VIII). In all eight structures, the residue at the ring 5‐position shows a coplanar arrangement with respect to the pyrimidine ring which is in agreement with a search of the Cambridge Structural Database for six‐membered cyclic compounds containing a carboxy group. The search confirmed that coplanarity between the carboxy group and the cyclic residue is strongly favoured.  相似文献   

7.
In the four compounds of chloranilic acid (2,5‐dichloro‐3,6‐dihydroxycyclohexa‐2,5‐diene‐1,4‐dione) with pyrrolidin‐2‐one and piperidin‐2‐one, namely, chloranilic acid–pyrrolidin‐2‐one (1/1), C6H2Cl2O4·C4H7NO, (I), chloranilic acid–pyrrolidin‐2‐one (1/2), C6H2Cl2O4·2C4H7NO, (II), chloranilic acid–piperidin‐2‐one (1/1), C6H2Cl2O4·C5H9NO, (III), and chloranilic acid–piperidin‐2‐one (1/2), C6H2Cl2O4·2C5H9NO, (IV), the shortest interactions between the two components are O—H...O hydrogen bonds, which act as the primary intermolecular interaction in the crystal structures. In (II), (III) and (IV), the chloranilic acid molecules lie about inversion centres. For (III), this necessitates the presence of two independent acid molecules. In (I), there are two formula units in the asymmetric unit. The O...O distances are 2.4728 (11) and 2.4978 (11) Å in (I), 2.5845 (11) Å in (II), 2.6223 (11) and 2.5909 (10) Å in (III), and 2.4484 (10) Å in (IV). In the hydrogen bond of (IV), the H atom is disordered over two positions with site occupancies of 0.44 (3) and 0.56 (3). This indicates that proton transfer between the acid and base has partly taken place to form ion pairs. In (I) and (II), N—H...O hydrogen bonds, the secondary intermolecular interactions, connect the pyrrolidin‐2‐one molecules into a dimer, while in (III) and (IV) these hydrogen bonds link the acid and base to afford three‐ and two‐dimensional hydrogen‐bonded networks, respectively.  相似文献   

8.
The structures of two ammonium salts of 3‐carboxy‐4‐hydroxybenzenesulfonic acid (5‐sulfosalicylic acid, 5‐SSA) have been determined at 200 K. In the 1:1 hydrated salt, ammonium 3‐carboxy‐4‐hydroxybenzenesulfonate monohydrate, NH4+·C7H5O6S·H2O, (I), the 5‐SSA monoanions give two types of head‐to‐tail laterally linked cyclic hydrogen‐bonding associations, both with graph‐set R44(20). The first involves both carboxylic acid O—H...Owater and water O—H...Osulfonate hydrogen bonds at one end, and ammonium N—H...Osulfonate and N—H...Ocarboxy hydrogen bonds at the other. The second association is centrosymmetric, with end linkages through water O—H...Osulfonate hydrogen bonds. These conjoined units form stacks down c and are extended into a three‐dimensional framework structure through N—H...O and water O—H...O hydrogen bonds to sulfonate O‐atom acceptors. Anhydrous triammonium 3‐carboxy‐4‐hydroxybenzenesulfonate 3‐carboxylato‐4‐hydroxybenzenesulfonate, 3NH4+·C7H4O6S2−·C7H5O6S, (II), is unusual, having both dianionic 5‐SSA2− and monoanionic 5‐SSA species. These are linked by a carboxylic acid O—H...O hydrogen bond and, together with the three ammonium cations (two on general sites and the third comprising two independent half‐cations lying on crystallographic twofold rotation axes), give a pseudo‐centrosymmetric asymmetric unit. Cation–anion hydrogen bonding within this layered unit involves a cyclic R33(8) association which, together with extensive peripheral N—H...O hydrogen bonding involving both sulfonate and carboxy/carboxylate acceptors, gives a three‐dimensional framework structure. This work further demonstrates the utility of the 5‐SSA monoanion for the generation of stable hydrogen‐bonded crystalline materials, and provides the structure of a dianionic 5‐SSA2− species of which there are only a few examples in the crystallographic literature.  相似文献   

9.
10.
In the inner‐salt zwitterion of 3,6‐bis(pyridin‐2‐yl)pyrazine‐2,5‐dicarboxylic acid, (I), namely 5‐carboxy‐3‐(pyridin‐1‐ium‐2‐yl)‐6‐(pyridin‐2‐yl)pyrazine‐2‐carboxylate, [C16H10N4O4, (Ia)], the pyrazine ring has a twist–boat conformation. The opposing pyridine and pyridinium rings are almost perpendicular to one another, with a dihedral angle of 80.24 (18)°, and are inclined to the pyrazine mean plane by 36.83 (17) and 43.74 (17)°, respectively. The carboxy and carboxylate groups are inclined to the mean plane of the pyrazine ring by 43.60 (17) and 45.46 (17)°, respectively. In the crystal structure, the molecules are linked via N—H...O and O—H...O hydrogen bonds, leading to the formation of double‐stranded chains propagating in the [010] direction. On treating (Ia) with aqueous 1 M HCl, the diprotonated dihydrate form 2,2′‐(3,6‐dicarboxypyrazine‐2,5‐diyl)bis(pyridin‐1‐ium) dichloride dihydrate [C16H12N4O42+·2Cl·2H2O, (Ib)] was obtained. The cation lies about an inversion centre. The pyridinium rings and carboxy groups are inclined to the planar pyrazine ring by 55.53 (9) and 19.8 (2)°, respectively. In the crystal structure, the molecules are involved in N—H...Cl, O—H...Owater and Owater—H...Cl hydrogen bonds, leading to the formation of chains propagating in the [010] direction. When (Ia) was recrystallized from dimethyl sulfoxide (DMSO), the DMSO disolvate 3,6‐bis(pyridin‐2‐yl)pyrazine‐2,5‐dicarboxylic acid dimethyl sulfoxide disolvate [C16H10N4O4·2C2H6OS, (Ic)] of (I) was obtained. Here, the molecule of (I) lies about an inversion centre and the pyridine rings are inclined to the planar pyrazine ring by only 23.59 (12)°. However, the carboxy groups are inclined to the pyrazine ring by 69.0 (3)°. In the crystal structure, the carboxy groups are linked to the DMSO molecules by O—H...O hydrogen bonds. In all three crystal structures, the presence of nonclassical hydrogen bonds gives rise to the formation of three‐dimensional supramolecular architectures.  相似文献   

11.
The crystal structures of quinolinium 3‐carboxy‐4‐hydroxy­benzene­sulfonate trihydrate, C9H8N+·C7H5O6S·3H2O, (I), 8‐hydroxy­quinolinium 3‐carboxy‐4‐hydroxy­benzene­sulfonate monohydrate, C9H8NO+·C7H5O6S·H2O, (II), 8‐amino­quinolinium 3‐carboxy‐4‐hydroxy­benzene­sulfonate dihydrate, C9H9N2+·C7H5O6S·2H2O, (III), and 2‐carboxy­quinolinium 3‐carboxy‐4‐hydroxy­benzene­sulfonate quinolinium‐2‐carboxylate, C10H8NO2+·C7H5O6S·C10H7NO2, (IV), four proton‐transfer compounds of 5‐sulfosalicylic acid with bicyclic heteroaromatic Lewis bases, reveal in each the presence of variously hydrogen‐bonded polymers. In only one of these compounds, viz. (II), is the protonated quinolinium group involved in a direct primary N+—H⋯O(sulfonate) hydrogen‐bonding interaction, while in the other hydrates, viz. (I) and (III), the water mol­ecules participate in the primary intermediate interaction. The quinaldic acid (quinoline‐2‐carboxylic acid) adduct, (IV), exhibits cation–cation and anion–adduct hydrogen bonding but no direct formal heteromolecular interaction other than a number of weak cation–anion and cation–adduct π–π stacking associations. In all other compounds, secondary interactions give rise to network polymer structures.  相似文献   

12.
The title compound, C6H9N2O2+·Cl·C6H8N2O2·H2O, contains one 2‐(3‐methyl‐1H‐imidazol‐3‐ium‐1‐yl)acetate inner salt molecule, one 1‐carboxymethyl‐3‐methyl‐1H‐imidazol‐3‐ium cation, one chloride ion and one water molecule. In the extended structure, chloride anions and water molecules are linked via O—H...Cl hydrogen bonds, forming an infinite one‐dimensional chain. The chloride anions are also linked by two weak C—H...Cl interactions to neighbouring methylene groups and imidazole rings. Two imidazolium moieties form a homoconjugated cation through a strong and asymmetric O—H...O hydrogen bond of 2.472 (2) Å. The IR spectrum shows a continuous D‐type absorption in the region below 1300 cm−1 and is different to that of 1‐carboxymethyl‐3‐methylimidazolium chloride [Xuan, Wang & Xue (2012). Spectrochim. Acta Part A, 96 , 436–443].  相似文献   

13.
The title compounds, C10H10N22+·C8Cl4O42−·2H2O, (I), and 2C12H9N2+·C8Cl4O42−·C8H2Cl4O4·3H2O, (II), both crystallize as charge‐transfer organic salts with the dianionic or neutral acid components lying on inversion centres. The acid and base subunits in (I) arrange alternately to generate a linear tape motif via N—H...O hydrogen bonds; these tapes are further combined into a three‐dimensional architecture through multiple O—H...O and C—H...O interactions involving solvent water molecules. In contrast, the neutral and anionic acid components in (II) are linked to form a zigzag chain by means of O—H...O hydrogen bonds between acid groups, with dangling 1,10‐phenanthrolinium units connected to these chains by carboxylate–pyridinium interactions with R22(7) hydrogen‐bond notation. Adjacent chains are further extended to result in a two‐dimensional corrugated layer network viaπ–π interactions. Inter‐ion Cl...O interactions are also found in both (I) and (II).  相似文献   

14.
The structures of ammonium 3,5‐dinitrobenzoate, NH4+·C7H3N2O6, (I), ammonium 4‐nitrobenzoate dihydrate, NH4+·C7H4NO4·2H2O, (II), and ammonium 2,4‐dichlorobenzoate hemihydrate, NH4+·C7H3Cl2O2·0.5H2O, (III), have been determined and their hydrogen‐bonded structures are described. All three salts form hydrogen‐bonded polymeric structures, viz. three‐dimensional in (I) and two‐dimensional in (II) and (III). With (I), a primary cation–anion cyclic association is formed [graph set R43(10)] through N—H...O hydrogen bonds, involving a carboxylate group with both O atoms contributing to the hydrogen bonds (denoted O,O′‐carboxylate) on one side and a carboxylate group with one O atom involved in two hydrogen bonds (denoted O‐carboxylate) on the other. Structure extension involves N—H...O hydrogen bonds to both carboxylate and nitro O‐atom acceptors. With structure (II), the primary inter‐species interactions and structure extension into layers lying parallel to (001) are through conjoined cyclic hydrogen‐bonding motifs, viz.R43(10) (one cation, an O,O′‐carboxylate group and two water molecules) and centrosymmetric R42(8) (two cations and two water molecules). The structure of (III) also has conjoined R43(10) and centrosymmetric R42(8) motifs in the layered structure but these differ in that the first motif involves one cation, an O,O′‐carboxylate group, an O‐carboxylate group and one water molecule, and the second motif involves two cations and two O‐carboxylate groups. The layers lie parallel to (100). The structures of salt hydrates (II) and (III), displaying two‐dimensional layered arrays through conjoined hydrogen‐bonded nets, provide further illustration of a previously indicated trend among ammonium salts of carboxylic acids, but the anhydrous three‐dimensional structure of (I) is inconsistent with that trend.  相似文献   

15.
1‐Benzofuran‐2,3‐dicarboxylic acid (C10H6O5) is a dicarboxylic acid ligand which can readily engage in organometallic complexes with various metal ions. This ligand is characterized by an intramolecular hydrogen bond between the two carboxyl residues, and, as a monoanionic species, readily forms supramolecular adducts with different organic and inorganic cations. These are a 1:1 adduct with the dimethylammonium cation, namely dimethylammonium 3‐carboxy‐1‐benzofuran‐2‐carboxylate, C2H8N+·C10H5O5, (I), a 2:1 complex with Cu2+ ions in which four neutral imidazole molecules also coordinate the metal atom, namely bis(3‐carboxy‐1‐benzofuran‐2‐carboxylato‐κO3)tetrakis(1H‐imidazole‐κN3)copper(II), [Cu(C10H5O5)2(C3H4N2)4], (II), and a 4:1 adduct with [La(H2O)7]3+ ions, namely heptaaquabis(3‐carboxy‐1‐benzofuran‐2‐carboxylato‐κO3)lanthanum 3‐carboxy‐1‐benzofuran‐2‐carboxylate 1‐benzofuran‐2,3‐dicarboxylic acid solvate tetrahydrate, [La(C10H5O5)2(H2O)7](C10H5O5)·C10H6O5·4H2O, (III). In the crystal structure, complex (II) resides on inversion centres, while complex (III) resides on axes of twofold rotation. The crystal packing in all three structures reveals π–π stacking interactions between the planar aromatic benzofuran residues, as well as hydrogen bonding between the components. The significance of this study lies in the first crystallographic characterization of the title framework, which consistently exhibits the presence of an intramolecular hydrogen bond and a consequent monoanionic‐only nature. It shows further that the anion can coordinate readily to metal cations as a ligand, as well as acting as a monovalent counter‐ion. Finally, the aromaticity of the flat benzofuran residue provides an additional supramolecular synthon that directs and facilitates the crystal packing of compounds (I)–(III).  相似文献   

16.
The two title proton‐transfer compounds, 5‐methylimidazolium 3‐carboxy‐4‐hydroxybenzenesulfonate, C4H7N2+·C7H5O6S, (I), and bis(5‐methylimidazolium) 3‐carboxylato‐4‐hydroxybenzenesulfonate, 2C4H7N2+·C7H5O6S2−, (II), are each organized into a three‐dimensional network by a combination of X—H...O (X = O, N or C) hydrogen bonds, and π–π and C—H...π interactions.  相似文献   

17.
The X‐ray single‐crystal structure determinations of the chemically related compounds 2‐amino‐1,3,4‐thiadiazolium hydrogen oxalate, C2H4N3S+·C2HO4, (I), 2‐amino‐1,3,4‐thiadiazole–succinic acid (1/2), C2H3N3S·2C4H6O4, (II), 2‐amino‐1,3,4‐thiadiazole–glutaric acid (1/1), C2H3N3S·C5H8O4, (III), and 2‐amino‐1,3,4‐thiadiazole–adipic acid (1/1), C2H3N3S·C6H10O4, (IV), are reported and their hydrogen‐bonding patterns are compared. The hydrogen bonds are of the types N—H...O or O—H...N and are of moderate strength. In some cases, weak C—H...O interactions are also present. Compound (II) differs from the others not only in the molar ratio of base and acid (1:2), but also in its hydrogen‐bonding pattern, which is based on chain motifs. In (I), (III) and (IV), the most prominent feature is the presence of an R22(8) graph‐set motif formed by N—H...O and O—H...N hydrogen bonds, which are present in all structures except for (I), where only a pair of N—H...O hydrogen bonds is present, in agreement with the greater acidity of oxalic acid. There are nonbonding S...O interactions present in all four structures. The difference electron‐density maps show a lack of electron density about the S atom along the S...O vector. In all four structures, the carboxylic acid H atoms are present in a rare configuration with a C—C—O—H torsion angle of ∼0°. In the structures of (II)–(IV), the C—C—O—H torsion angle of the second carboxylic acid group has the more common value of ∼|180|°. The dicarboxylic acid molecules are situated on crystallographic inversion centres in (II). The Raman and IR spectra of the title compounds are presented and analysed.  相似文献   

18.
5‐Sulfosalicylic acid (5‐SSA) and 3‐aminopyridine (3‐APy) crystallize in the same solvent system, resulting in two kinds of 1:1 proton‐transfer organic adduct, namely 3‐aminopyridinium 3‐carboxy‐4‐hydroxybenzenesulfonate monohydrate, C5H7N2+·C7H5O6S·H2O or 3‐APy·5‐SSA·H2O, (I), and the anhydrous adduct, C5H7N2+·C7H5O6S or 3‐APy·5‐SSA, (II). Both compounds have extensively hydrogen‐bonded three‐dimensional layered polymer structures, with interlayer homo‐ and heterogeneous π–π interactions in (I) and (II), respectively.  相似文献   

19.
The asymmetric unit of the optically resolved title salt, C8H12N+·C4H5O4S, contains a 1‐phenylethanaminium monocation and a thiomalate (3‐carboxy‐2‐sulfanylpropanoate) monoanion. The absolute configurations of the cation and the anion are determined to be S and R, respectively. In the crystal, cation–anion N—H...O hydrogen bonds, together with anion–anion O—H...O and S—H...O hydrogen bonds, construct a two‐dimensional supramolecular sheet parallel to the ab plane. The two‐dimensional sheet is linked with the upper and lower sheets through C—H...π interactions to stack along the c axis.  相似文献   

20.
The structure of the title compound, C14H19N2+·C9H3Cl6O4?·H2O, consists of singly ionized 1,4,5,6,7,7‐hexachlorobicyclo[2.2.1]hept‐5‐ene‐2,3‐dicarboxylic acid anions and protonated 1,8‐bis(dimethylamino)naphthalene cations. In the (8‐dimethylamino‐1‐napthyl)dimethylammonium cat­ion, a strong disordered intramolecular hydrogen bond is formed with N?N = 2.589 (3) Å. The geometry and occupancy obtained in the final restrained refinement suggest that the disordered hydrogen bond may be asymmetric. Water mol­ecules link the anion dimers into infinite chains via hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号