首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Two cyclic θ‐defensin peptides were isolated from leukocytes of the hamadryas baboon, Papio hamadryas, and purified to homogeneity by gel electrophoresis and reversed‐phase high‐performance liquid chromatography. Both peptides had high in vitro activity against Escherichia coli, Listeria monocytogenes, methicillin‐resistant Staphylococcus aureus (MRSA) and Candida albicans. Here, we report their de novo sequencing by matrix‐assisted laser desorption/ionization tandem time‐of‐flight mass spectrometry (MALDI‐TOF/TOF‐MS). This was accomplished by combining conventional enzymatic digestion with N‐terminal derivatization by 2‐sulfobenzoic acid cyclic anhydride (SACA) or 4‐sulfophenylisothiocyanate (SPITC) to facilitate the interpretation of fragment ion spectra. In addition to the two cyclic θ‐defensins (PhTDs) we also sequenced a novel Papio hamadryas α‐defensin, PhD‐4, which showed high sequence homology to rhesus α‐defensin RMAD‐1 and human α‐defensin HNP‐1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
We present the MALDI‐TOF/TOF‐MS analyses of various hapten–bovine serum albumin (BSA) neoglycoconjugates obtained by squaric acid chemistry coupling of the spacer‐equipped, terminal monosaccharide of the O‐specific polysaccharide of Vibrio cholerae O1, serotype Ogawa, to BSA. These analyses allowed not only to calculate the molecular masses of the hapten–BSA neoglycoconjugates with different hapten–BSA ratios (4.3, 6.6 and 13.2) but, more importantly, also to localize the covalent linkages (conjugation sites) between the hapten and the carrier protein. Determination of the site of glycation was based on comparison of the MALDI‐TOF/TOF‐MS analysis of the peptides resulting from the digestion of BSA with similar data resulting from the digestion of BSA glycoconjugates, followed by sequencing by MALDI‐TOF/TOF‐MS/MS of the glycated peptides. The product‐ion scans of the protonated molecules were carried out with a MALDI‐TOF/TOF‐MS/MS tandem mass spectrometer equipped with a high‐collision energy cell. The high‐energy collision‐induced dissociation (CID) spectra afforded product ions formed by fragmentation of the carbohydrate hapten and amino acid sequences conjugated with fragments of the carbohydrate hapten. We were able to identify three conjugation sites on lysine residues (Lys235, Lys437 and Lys455). It was shown that these lysine residues are very reactive and bind lysine specific reagents. We presume that these Lys residues belong to those that are considered to be sterically more accessible on the surface of the tridimensional structure. The identification of the y‐series product ions was very useful for the sequencing of various peptides. The series of a‐ and b‐product ions confirmed the sequence of the conjugated peptides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Matrix‐assisted laser desorption/ionization in‐source decay (MALDI‐ISD) has been used for characterization of a phosphorylated peptides and proteins because labile phosphate group is not lost during the MALDI‐ISD process. The conventional MALDI‐ISD is initiated by the hydrogen transfer from reducing matrix molecules to peptide backbone, leading to c′‐ and z′‐series ions. In contrast, when an oxidizing chemical 5‐nitrosalicylic acid (5‐NSA) is served as the MALDI‐ISD matrix, a‐ and x‐series ions are specifically generated by hydrogen abstraction from peptide backbone to matrix molecule. The 5‐NSA provides useful complementary information to the conventional MALDI‐ISD for the analysis of amino acid sequencing and site localization of phosphorylation in peptides. The MALDI‐ISD with reducing and oxidizing matrix could be a useful method for the de novo peptide sequencing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

5.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

6.
Accurate and rapid determination of trypanosomatids is essential in epidemiological surveillance and therapeutic studies. Matrix‐assisted laser desorption ionization/time of flight mass spectrometry (MALDI‐TOF MS) has been shown to be a useful and powerful technique to identify bacteria, fungi, metazoa and human intact cells with applications in clinical settings. Here, we developed and optimized a MALDI‐TOF MS method to profile trypanosomatids. trypanosomatid cells were deposited on a MALDI target plate followed by addition of matrix solution. The plate was then subjected to MALDI‐TOF MS measurement to create reference mass spectra library and unknown samples were identified by pattern matching using the BioTyper software tool. Several m/z peaks reproducibly and uniquely identified trypanosomatids species showing the potentials of direct identification of trypanosomatids by MALDI‐TOF MS. Moreover, this method discriminated different life stages of Trypanosoma cruzi, epimastigote and bloodstream trypomastigote and Trypanosoma brucei, procyclic and bloodstream. T. cruzi Discrete Typing Units (DTUs) were also discriminated in three clades. However, it was not possible to achieve enough resolution and software‐assisted identification at the strain level. Overall, this study shows the importance of MALDI‐TOF MS for the direct identification of trypanosomatids and opens new avenues for mass spectrometry‐based detection of parasites in biofluids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Bacteriophage (phage) proteins have been analyzed previously with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). However, analysis of phage major capsid proteins (MCPs) has been limited by the ability to reproducibly generate ions from MCP monomers. While the acidic conditions of MALDI‐TOF MS sample preparation have been shown to aid in disassembly of some phage capsids, many require further treatment to successfully liberate MCP monomers. The findings presented here suggest that β‐mercaptoethanol reduction of the disulfide bonds linking phage MCPs prior to mass spectrometric analysis results in significantly increased MALDI‐TOF MS sensitivity and reproducibility of Yersinia pestis‐specific phage protein profiles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The present study aims to compare two molecular technologies, 16S rRNA sequencing and MALDI‐TOF MS, for bacterial species identification in seafood. With this aim, 70 reference strains from culture collections, including important seafood‐borne pathogenic and spoilage bacterial species, and 50 strains isolated from commercial seafood products, were analysed by both techniques. Genomic analysis only identified the species of 50% of the isolated strains, proving to be particularly poor at identifying members of the Pseudomonas and Bacillus genera. In contrast, MALDI‐TOF MS fingerprinting identified 76% of the strains at the species level. The mass spectral data were submitted to the SpectraBank database ( http://www.spectrabank.org ), making this information available to other researchers. Furthermore, cluster analysis of the peak mass lists was carried out with the web application SPECLUST and the calculated groupings were consistent with results determined by a phylogenetic approach that is based on the 16S rRNA sequences. However, the MALDI‐TOF MS analysis demonstrated more discriminating potential that allowed for better classification, especially for the Pseudomonas and Bacillus genera. This is of importance with respect to the varying pathogenic and spoilage character at the intragenus and intraspecies level. In this sense, MALDI‐TOF MS demonstrated to be a competent bacterial typing tool that extends phenotypic and genotypic approaches, allowing a more ample classification of bacterial strains.  相似文献   

9.
The protein tropomyosin (TM) is a known major allergen present in shellfish causing frequent food allergies. TM is also an occupational allergen generated in the working environment of snow crab (Chionoecetes opilio) processing plants. The TM protein was purified from both claw and leg meats of snow crab and analyzed by electrospray ionization and matrix‐assisted laser desorption/ionization (MALDI) using hybrid quadruple time‐of‐flight tandem mass spectrometry (QqToF‐MS). The native polypeptide molecular weight of TM was determined to be 32 733 Da. The protein was further characterized using the ‘bottom‐up’ MS approach. A peptide mass fingerprinting was obtained by two different enzymatic digestions and de novo sequencing of the most abundant peptides performed. Any post‐translational modifications were identified by searching their calculated and predicted molecular weights in precursor ion spectra. The immunological reactivity of snow crab extract was evaluated using specific antibodies and allergenic reactivity assessed with serum of allergic patients. Subsequently, a signature peptide for TM was identified and evaluated in terms of identity and homology using the basic local alignment search tool (BLAST). The identification of a signature peptide for the allergen TM using MALDI‐QqToF‐MS will be critical for the sensitive and specific quantification of this highly allergenic protein in the work place. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes an improved method for the sequence analysis of Arg‐containing glycopeptide by MALDI mass spectrometry (MS). The method uses amino group derivatization (4‐aza‐6‐(2,6‐dimethyl‐1‐piperidinyl)‐5‐oxohexanoic acid N‐succinimidyl ester) and removal (carboxypeptidase B) or modification (peptidylarginine deiminase 4) of the arginine residue of the peptide. The derivatization attaches a basic tertiary amine moiety onto the peptides, and the enzymatic treatment removes or modifies the arginine residue. Fragmentation of the resulting glycopeptide under low‐energy collision‐induced dissociation yielded a simplified ion series of both the glycan and the peptide that can facilitate their sequencing. The feasibility of the method was studied using α1‐acid glycoprotein‐derived N‐linked glycopeptides, and glycan and peptide in each glycopeptide were successfully sequenced by MALDI tandem MS (MS/MS). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
MALDI‐TOF MS characterizations of dihydroxy telechelic polyisobutylene is reported. Dichloro telechelic polyisobutylene (Cl—PIB—Cl) was synthesized by means of living cationic polymerization using p‐dicumyl chloride/BCl3/DMSO initiating systems. The resulting polymer was functionalized by polymer analogous reactions to yield dihydroxy telechelic polyisobutylene (HO—PIB—OH). It was then investigated by MALDI‐TOF MS in the cation mode using 1,8‐dihidroxy‐9(10H)‐anthracenone (dithranol)/CF3COOAg matrix. The MALDI TOF MS spectra showed an increase in mass by 56 amu units attributed to the isobutylene monomer increment. The endgroups of HO—PIB—OH were determined. A good agreement was also found between the calculated isotope distributions and the isotope distributions determined by means of MALDI.  相似文献   

12.
The high accuracy, molecular resolution and sensitivity of matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) make it an efficient method for analysing all kinds of biomolecules including nucleic acids, proteins/peptides, carbohydrates and lipids. MALDI‐TOF‐MS based high‐throughput genotyping of genetic heterogeneities possesses the potential of becoming a routine method. MAL‐DI‐TOF‐MS can be used for the identification of proteins and posttranslational modifications. Taken together, MALDI‐TOF‐MS represents a integrated platform technology in bioanalytics and molecular medicine.  相似文献   

13.
A novel approach to high‐throughput sequence deconvolution of on‐bead small peptides (MW < 2000 Da) using on‐target MALDI‐TOF/TOF instrumentation is presented. Short peptides of pentamer and octamer length, covalently attached to TentaGel polystyrene beads through a photolabile linker, were placed onto the MALDI target, apportioned with suitable matrix (2,5‐dihydroxybenzoic acid) and then hit with the instrument laser (Nd : YAG, 355 nm). This induced easy and highly reproducible photochemical cleavage, desorption (MS mode) and fragmentation (MS/MS mode). Peptide fragments were identified with a mass accuracy of 0.1 Da of the expected values. This technique significantly accelerates the sequence determination of positive peptide hits obtained from random combinatorial libraries when screening against biological targets, paving the way for a rapid and efficient method to identify molecular imaging ligands specific to pathological targets in cancer and other diseases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The molar mass determination of block copolymers, in particular amphiphilic block copolymers, has been challenging with chromatographic techniques. Therefore, methoxy poly(ethylene glycol)‐b‐poly(styrene) (mPEG‐b‐PS) was synthesized by atom transfer radical polymerization (ATRP) and characterized in detail not only by conventional chromatographic techniques, such as size exclusion chromatography (SEC), but also by matrix‐assisted laser/desorption ionization tandem mass spectrometry (MALDI‐TOF MS/MS). As expected, different molar mass values were obtained in the SEC measurements depending on the calibration standards (either PEG or PS). In contrast, MALDI‐TOF MS/MS analysis allowed the molar mass determination of each block, by the scission of the weakest point between the PEG and PS block. Thus, fragments of the individual blocks could be obtained. The PEG block showed a depolymerization reaction, while for the PS block fragments were obtained in the monomeric, dimeric, and trimeric regions as a result of multiple chain scissions. The block length of PEG and PS could be calculated from the fragments recorded in the MALDI‐TOF MS/MS spectrum. Furthermore, the assignment of the substructures of the individual blocks acquired by MALDI‐TOF MS/MS was accomplished with the help of the fragments that were obtained from the corresponding homopolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
Analysis of the mitochondrial DNA variation in populations is commonly carried out in many fields of biomedical research. We propose the analysis of mitochondrial DNA coding region SNP (mtSNP) variation to a high level of phylogenetic resolution based on MALDI‐TOF MS. The African phylogeny has been chosen to test the applicability of the technique but any other part of the worldwide phylogeny (or any other mtSNP panel) could be equally suitable for MALDI‐TOF MS genotyping. SNP selection thus aimed to fully cover all the mtSNPs defining major and minor branches of the known African tree, including, macro‐haplogroup L, and haplogroups M1, and U6. A total of 230 mtSNPs were finally selected. We used tests samples collected from two different African locations, namely, Mozambique and Chad Basin. Different internal genotyping controls and other indirect approaches (e.g. phylogenetic checking coupled with automatic sequencing) were used in order to evaluate the reproducibility of the technique, which resulted to be 100% using samples previously subjected to whole genome amplification. The advantages of the MALDI‐TOF MS are also discussed in comparison with other popular methods such as minisequencing, highlighting its high‐throughput nature, which is particularly suitable for case–control medical studies, forensic databasing or population and anthropological studies.  相似文献   

16.
De novo sequencing of peptides using tandem MS is difficult due to missing fragment ions in the spectra commonly obtained after CID of peptide precursor ions. Complementing CID spectra with spectra obtained in an ion‐trap mass spectrometer upon electron transfer dissociation (ETD) significantly increases the sequence coverage with diagnostic ions. In the de novo sequencing algorithm CompNovo presented here, a divide‐and‐conquer approach was combined with an efficient mass decomposition algorithm to exploit the complementary information contained in CID and ETD spectra. After optimizing the parameters for the algorithm on a well‐defined training data set obtained for peptides from nine known proteins, the CompNovo algorithm was applied to the de novo sequencing of peptides derived from a whole protein extract of Sorangium cellulosum bacteria. To 2406 pairs of CID and ETD spectra contained in this data set, 675 fully correct sequences were assigned, which represent a success rate of 28.1%. It is shown that the CompNovo algorithm yields significantly improved sequencing accuracy as compared with published approaches using only CID spectra or combined CID and ETD spectra.  相似文献   

17.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) is a valuable tool for rapid bacterial detection and identification but is limited by the need for relatively high cell count samples, which have been grown under strictly controlled conditions. These requirements can be eliminated by the natural infection of a viable bacterial species of interest with a host‐specific phage. This produces a rapid increase in phage protein concentrations in comparison to bacterial concentrations, which can in turn be exploited as a method for signal amplification during MALDI‐TOF MS. One drawback to this approach is the requirement for repetitive, time‐consuming sample preparation and analysis applied over the course of a phage infection to monitor phage concentrations as a function of time to determine the MALDI‐TOF MS detection limit. To reduce the requirement for repeated preparation and analysis, a modified phage therapy model was investigated as a means for predicting the time during a given phage infection when a detectable signal would occur. The modified model used a series of three differential equations composed of predetermined experimental parameters including phage burst size and burst time to predict progeny phage concentrations as a function of time. Using Yersinia pestis with plague diagnostic phage ?A1122 and Escherichia coli with phage MS2 as two separate, well‐characterized model phage–host pairs, we conducted in silico modeling of the infection process and compared it with experimental infections monitored in real time by MALDI‐TOF MS. Significant agreement between mathematically calculated phage growth curves and those experimentally obtained by MALDI‐TOF MS was observed, thus verifying this method's utility for significant time and labor reduction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Matrix‐assisted laser desorption/ionization in‐source decay (MALDI‐ISD) is initiated by hydrogen transfer from matrix molecules to the carbonyl oxygen of peptide backbone with subsequent radical‐induced cleavage leading to c′/z? fragments pair. MALDI‐ISD is a very powerful method to obtain long sequence tags from proteins or to do de novo sequencing of peptides. Besides classical fragmentation, MALDI‐ISD also shows specific fragments for which the mechanism of formation enlightened the MALDI‐ISD process. In this study, the MALDI‐ISD mechanism is reviewed, and a specific mechanism is studied in details: the N‐terminal side of Cys residue (Xxx‐Cys) is described to promote the generation of c′ and w fragments in MALDI‐ISD. Our data suggest that for sequences containing Xxx‐Cys motifs, the N–Cα bond cleavage occurs following the hydrogen attachment to the thiol group of Cys side‐chain. The c?/w fragments pair is formed by side‐chain loss of the Cys residue with subsequent radical‐induced cleavage at the N–Cα bond located at the left side (N‐terminal direction) of the Cys residue. This fragmentation pathway preferentially occurs at free Cys residue and is suppressed when the cysteines are involved in disulfide bonds. Hydrogen attachment to alkylated Cys residues using iodoacetamide gives free Cys residue by the loss of ?CH2CONH2 radical. The presence of alkylated Cys residue also suppress the formation of c?/w fragments pair via the (Cβ)‐centered radical, whereas w fragment is still observed as intense signal. In this case, the z? fragment formed by hydrogen attachment of carbonyl oxygen followed side‐chain loss at alkylated Cys leads to a w fragment. Hydrogen attachment on peptide backbone and side‐chain of Cys residue occurs therefore competitively during MALDI‐ISD process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Verticillium spp. have been listed by the European and Mediterranean Plant Protection Organization (EPPO) and China as plant quarantine pests. Although attempts have been made to develop a simple routine laboratory assay to detect these organisms, none are routinely used. We describe for the first time a robust assay for reliable identification of Verticillium spp. using protein fingerprinting data obtained by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry(MALDI‐TOF‐MS). Several sample preparation methods and matrices were investigated to improve mass spectra for the routine identification of six species of Verticillium spp.(Verticillium dahiliae, V. alboatrum, V. fungicola, V. nigrescens, and V. lecanii) by MALDI‐TOF‐MS. Using the optimized experimental method, we constructed a protein fingerprint database for six species of Verticillium and established a analysis criteria of log(Score). This MALDI‐TOF‐MS protocol should prove useful as a rapid and reliable assay for distinguishing different Verticillium spp. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The milk of the one‐humped camel (Camelus dromedarius) reportedly offers medicinal benefits, perhaps because of its unique bioactive components. Milk proteins were determined by (1) two‐dimensional gel electrophoresis and peptide mass mapping and (2) liquid chromatography–tandem mass spectrometry (LC–MS/MS) following one‐dimensional polyacrylamide gel electrophoresis. Over 200 proteins were identified: some known camel proteins including heavy‐chain immunoglobulins and others exhibiting regions of exact homology with proteins from other species. Indigenous peptides were also identified following isolation and concentration by two strategies: (1) gel‐eluted liquid fraction entrapment electrophoresis and (2) small‐scale electrophoretic separation. Extracts were analyzed by LC–MS/MS and peptides identified by matching strategies, by de novo sequencing and by applying a sequence tag tool requiring similarity to the proposed sequence, but not an exact match. A plethora of protein cleavage products including some novel peptides were characterized. These studies demonstrate that camel milk is a rich source of peptides, some of which may serve as nutraceuticals. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号