首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In the title coordination polymer, {[Cd(C6H8O4S)(C13H14N2)]·H2O}n, the CdII atom displays a distorted octahedral coordination, formed by three carboxylate O atoms and one S atom from three different 3,3′‐thiodipropionate ligands, and two N atoms from two different 4,4′‐(propane‐1,3‐diyl)dipyridine ligands. The CdII centres are bridged through carboxylate O atoms of 3,3′‐thiodipropionate ligands and through N atoms of 4,4′‐(propane‐1,3‐diyl)dipyridine ligands to form two different one‐dimensional chains, which intersect to form a two‐dimensional layer. These two‐dimensional layers are linked by S atoms of 3,3′‐thiodipropionate ligands from adjacent layers to form a three‐dimensional network.  相似文献   

2.
In recent years, coordination polymers constructed from multidentate carboxylate and pyridyl ligands have attracted much attention because these ligands can adopt a rich variety of coordination modes and thus lead to the formation of crystalline products with intriguing structures and interesting properties. A new coordination polymer, namely poly[[μ2‐1,6‐bis(pyridin‐3‐yl)‐1,3,5‐hexatriene‐κ2N:N′](μ3‐naphthalene‐1,4‐dicarboxylato‐κ4O1,O1′:O4:O4′)zinc(II)], [Zn(C12H6O4)(C16H14N2)]n, has been prepared by the self‐assembly of Zn(NO3)2·6H2O, naphthalene‐1,4‐dicarboxylic acid (1,4‐H2ndc) and 1,6‐bis(pyridin‐3‐yl)‐1,3,5‐hexatriene (3,3′‐bphte) under hydrothermal conditions. The title compound has been structurally characterized by IR spectroscopy, elemental analysis, powder X‐ray diffraction and single‐crystal X‐ray diffraction analysis. Each ZnII ion is six‐coordinated by four O atoms from three 1,4‐ndc2− ligands and by two N atoms from two 3,3′‐bphte ligands, forming a distorted octahedral ZnO4N2 coordination geometry. Pairs of ZnII ions are linked by 1,4‐ndc2− ligands, leading to the formation of a two‐dimensional square lattice ( sql ) layer extending in the ab plane. In the crystal, adjacent layers are further connected by 3,3′‐bphte bridges, generating a three‐dimensional architecture. From a topological viewpoint, if each dinuclear zinc unit is considered as a 6‐connected node and the 1,4‐ndc2− and 3,3′‐bphte ligands are regarded as linkers, the structure can be simplified as a unique three‐dimensional 6‐connected framework with the point symbol 446108. The thermal stability and solid‐state photoluminescence properties have also been investigated.  相似文献   

3.
A novel copper(II) coordination polymer, poly­[[[aqua­copper(II)]‐μ3‐2,2′‐bipyridyl‐3,3′‐di­carboxyl­ato‐κ4N,N′:O:O′] dihydrate], {[Cu(C12H6N2O4)(H2O)]·2H2O}n, was obtained by the reaction of CuCl2·2H2O and 2,2′‐bipyridyl‐3,3′‐di­carboxylic acid (H2L) in water. In the mol­ecule, each CuII atom is five‐coordinated and lies at the centre of a square‐pyramidal basal plane, bridged by three L ligands to form a two‐dimensional (4,4)‐network. Each L moiety acts as a bridging tetradentate ligand, coordinating to three CuII atoms through its two aromatic N atoms and two O atoms of the two carboxyl groups. The two‐dimensional square‐grid sheets superimpose in an off‐set fashion through the inorganic water layer.  相似文献   

4.
The CoII atom in bis(5‐aminotetrazole‐1‐acetato)tetraaquacobalt(II), [Co(C3H4N5O2)2(H2O)4], (I), is octahedrally coordinated by six O atoms from two 5‐aminotetrazole‐1‐acetate (atza) ligands and four water molecules. The molecule has a crystallographic centre of symmetry located at the CoII atom. The molecules of (I) are interlinked by hydrogen‐bond interactions, forming a two‐dimensional supramolecular network structure in the ac plane. The CdII atom in catena‐poly[[cadmium(II)]‐bis(μ‐5‐aminotetrazole‐1‐acetato], [Cd(C3H4N5O2)2]n, (II), lies on a twofold axis and is coordinated by two N atoms and four O atoms from four atza ligands to form a distorted octahedral coordination environment. The CdII centres are connected through tridentate atza bridging ligands to form a two‐dimensional layered structure extending along the ab plane, which is further linked into a three‐dimensional structure through hydrogen‐bond interactions.  相似文献   

5.
In recent years, N‐heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N‐atom donors, as well as O‐atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two‐dimensional coordination polymer, namely poly[[μ3‐2,2′‐(1,2‐phenylene)bis(4‐carboxy‐1H‐imidazole‐5‐carboxylato)‐κ6O4,N3,N3′,O4′:O5:O5′]manganese(II)], [Mn(C16H8N4O8)]n or [Mn(H4Phbidc)]n, has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six‐coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two‐dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H…O hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

6.
The title compound, [CoII(C10H8O6)(C10H8N2)(H2O)2]n, was obtained by the hydro­thermal reaction of CoSO4 with benzene‐1,4‐dioxy­di­acetate [systematic name: p‐phenyl­ene­bis­(oxy­acetate)] and 4,4′‐bi­pyridine (4,4′‐bpy). The Co atom lies at an inversion center and the benzene‐1,4‐dioxydiacetate and 4,4′‐bipyridine moieties lie about other inversion centers. The benzene‐1,4‐dioxydiacetate ligands bridge the octahedral CoII coordination centers, forming a one‐dimensional zigzag chain. The chains are further bridged by 4,4′‐bpy ligands, forming a novel two‐dimensional supramolecular architecture. Hydro­gen‐bonding interactions between the coordinated water mol­ecules and the carboxyl­ate O atoms lead to the formation of a three‐dimensional network structure.  相似文献   

7.
In the title compound, {[Co(C14H8N2O5)(C10H8N2)]·3H2O}n, the CoII cation is five‐coordinated with a slightly distorted trigonal–bipyramidal geometry, and the 5‐isonicotinamidoisophthalate ligands link CoII atoms into a layered structure. These two‐dimensional arrays are further pillared by rod‐like 4,4′‐bipyridine ligands to give a three‐dimensional framework with pcu (primitive cubic) topology. The magnetic and adsorption properties of the title compound are also discussed.  相似文献   

8.
A novel two‐dimensional CoII coordination framework, namely poly[(μ2‐biphenyl‐4,4′‐diyldicarboxylato‐κ2O4:O4′){μ2‐bis[4‐(2‐methyl‐1H‐imidazol‐1‐yl)phenyl] ether‐κ2N3:N3′}cobalt(II)], [Co(C14H8O4)(C20H18N4O)]n, has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. The crystal structure reveals that the compound has an achiral two‐dimensional layered structure based on opposite‐handed helical chains. In addition, it exhibits significant photocatalytic degradation activity for the degradation of methylene blue.  相似文献   

9.
The asymmetric unit of the title compound, [Cd(C8H4O4)(C17H8ClN5)(H2O)]n, contains one CdII atom, two half benzene‐1,4‐dicarboxylate (1,4‐bdc) anions, one 11‐chloropyrido[2′,3′:2,3]pyrimidino[5,6‐f][1,10]phenanthroline (L) ligand and one coordination water molecule. The 1,4‐bdc ligands are on inversion centers at the centroids of the arene rings. The CdII atom is six‐coordinated by two N atoms from one L ligand, three carboxylate O atoms from two different 1,4‐bdc ligands and one water O atom in a distorted octahedral coordination sphere. Each CdII center is bridged by the 1,4‐bdc dianions to give a one‐dimensional chain. π–π stacking interactions between L ligands of neighboring chains extend adjacent chains into a two‐dimensional supramolecular (6,3) network. Neighboring (6,3) networks are interpenetrated in an unusual inclined mode, resulting in a three‐dimensional framework. Additionally, the water–carboxylate O—H...O hydrogen bonds observed in the network consolidate the interpenetrating nets.  相似文献   

10.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

11.
A novel three‐dimensional coordination polymer, {[Pb(C14H8N2O4)(H2O)]·0.5C12H10N2}n, has been synthesized by hydrothermal reaction of Pb(OAc)2·3H2O (OAc is acetate), 2,2′‐(diazene‐1,2‐diyl)dibenzoic acid (H2L) and 1,2‐bis(pyridin‐4‐yl)ethylene (bpe). The asymmetric unit contains a crystallographically independent PbII cation, one L2− ligand, an aqua ligand and half a bpe molecule. Each PbII centre is seven‐coordinated by six O atoms of bridging–chelating carboxylate groups from L2− ligands and by one O atom from a coordinated water molecule. The PbII cations are bridged by L2− ligands, forming [PbO2]n chains along the a axis. These chains are further connected by L2− ligands along the b and c axes to give a three‐dimensional framework with a 41263 topology. The channel voids are occupied by bpe molecules.  相似文献   

12.
The asymmetric unit of the title two‐dimensional coordination polymer, [Co2(C16H6O8)(C14H14N4)2]n, contains one Co2+ ion, half of a biphenyl‐3,3′,4,4′‐tetracarboxylate (bptc) anion lying about an inversion centre and one 1,4‐bis(imidazol‐1‐ylmethyl)benzene (bix) ligand. The CoII atom is coordinated by three carboxylate O atoms from two different bptc ligands and two N atoms from two bix ligands constructing a distorted square pyramid. Each Co2+ ion is interlinked by two bptc anions, while each bptc anion coordinates to four Co atoms as a hexadentate ligand so that four CoII atoms and four bptc anions afford a larger 38‐membered ring. These inorganic rings are further extended into a two‐dimensional undulated network in the (10) plane. Two CoII atoms in adjacent 38‐membered rings are joined together by pairs of bix ligands forming a 26‐membered [Co2(bix)2] ring that is penetrated by a bptc anion; these components share a common inversion centre.  相似文献   

13.
A novel neutral polymer, {[Co2(C7H3NO4)2(H2O)4]·2H2O}n, was hydrothermally synthesized using pyridine‐2,5‐dicarboxylate (2,5‐PDC2−) as the organic linker. It features a two‐dimensional layer structure constructed from one‐dimensional {[Co(2,5‐PDC)2]2−}n chains interlinked by [Co(H2O)4]+ units. The two CoII cations occupy special positions, sitting on inversion centres. Each 2,5‐PDC2− anion chelates to one CoII cation via the pyridine N atom and an O atom of the adjacent carboxylate group, and links to two other CoII cations in a bridging mode via the O atoms of the other carboxylate group. In this way, the 2,5‐PDC2− ligand connects three neighbouring CoII centres to form a two‐dimensional network. The two‐dimensional undulating layers are linked by extensive hydrogen bonds to form a three‐dimensional supramolecular structure, with the uncoordinated solvent molecules occupying the interlamellar region.  相似文献   

14.
The title compound, [Co(C10H8N2)(H2O)4]2(C10H2O8)·2H2O, consists of two crystallographically independent CoII atoms linked by 4,4′‐bi­pyridine ligands into one‐dimensional chains, which are further connected into a three‐dimensional framework linked by [C6H2(COO)4]4? anions and water mol­ecules, achieved through complex hydrogen bonding.  相似文献   

15.
In the title coordination polymer, catena‐poly[[dichloridomanganese(II)]‐μ‐1,1‐diphenyl‐3,3′‐[(1R,2R)‐cyclohexane‐1,2‐diylbis(azaniumylylidene)]dibut‐1‐en‐1‐olate‐κ2O:O′], [MnCl2(C26H30N2)]n, synthesized by the reaction of the chiral Schiff base ligand 1,1‐diphenyl‐3,3′‐[(1R,2R)‐cyclohexane‐1,2‐diylbis(azanediyl)]dibut‐2‐en‐1‐one (L) with MnCl2·4H2O, the asymmetric unit contains one crystallographically unique MnII ion, one unique spacer ligand, L, and two chloride ions. Each MnII ion is four‐coordinated in a distorted tetrahedral coordination environment by two O atoms from two L ligands and by two chloride ligands. The MnII ions are bridged by L ligands to form a one‐dimensional chain structure along the a axis. The chloride ligands are monodentate (terminal). The ligand is in the zwitterionic enol form and displays intramolecular ionic N+—H...O hydrogen bonding and π–π interactions between pairs of phenyl rings which strengthen the chains.  相似文献   

16.
The reaction of CoSO4 with 2,4‐oxydibenzoic acid (H2oba) and 4,4′‐bipyridine (bipy) under hydrothermal condition yielded a new one‐dimensional cobalt(II) coordination polymer, {[Co(C14H9O5)2(C10H8N2)(H2O)2]·2H2O}n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, magnetic properties and single‐crystal X‐ray diffraction. The CoII ions are connected by bipy ligands into infinite one‐dimensional chains. The Hoba ligands extend out from the two sides of the one‐dimensional chain. O—H...O hydrogen bonding extends these chains into a two‐dimensional supramolecular architecture.  相似文献   

17.
The asymmetric unit of the title compound, [Pb2(C8H4O4)2(C18H11N5)2]n, contains two PbII atoms, two benzene‐1,4‐dicarboxylate (1,4‐bdc) dianions and two 6‐(4‐pyridyl)‐5H‐imidazolo[4,5‐f][1,10]phenanthroline (L) ligands. Each PbII atom is eight‐coordinated by three N atoms from two different L ligands and five carboxylate O atoms from three different 1,4‐bdc dianions. The two 1,4‐bdc dianions (1,4‐bdc1 and 1,4‐bdc2) show different coordination modes. Each 1,4‐bdc1 coordinates to two PbII atoms in a chelating bis‐bidentate mode. Each carboxylate group of the 1,4‐bdc2 anion connects two PbII atoms in a chelating–bridging tridentate mode to form a dinuclear unit. Neighbouring dinuclear units are connected together by the aromatic backbone of the 1,4‐bdc dianions and the L ligands into a three‐dimensional six‐connected α‐polonium framework. The most striking feature is that two identical three‐dimensional single α‐polonium nets are interlocked with each other, thus leading directly to the formation of a twofold interpenetrated three‐dimensional α‐polonium architecture. The framework is held together in part by strong N—H...O hydrogen bonds between the imidazole NH groups of the L ligands and the carboxylate O atoms of 1,4‐bdc dianions within different α‐polonium nets.  相似文献   

18.
Two metal‐organic coordination polymers of CoII with the molecular formulae [Co(L1)(tp)(H2O)2]n ( 1 ) and [Co(L2)(tp) · H2O]n ( 2 ) [L1 = 1, 4‐bis(benzimidazole‐1‐ylmethyl)‐ benzene; L2 = 1, 1‐(1, 4‐butanediyl)bis(5, 6‐dimethylbenzimidazole); tp = terephthalate] were synthesized and characterized by single‐crystal X‐ray diffraction studies, infrared spectroscopy (IR), thermogravimetric analysis (TGA), X‐ray powder diffraction (XRPD), and elemental analysis. The structure determination of complex 1 reveals a 2D layer with (4, 4) topology, with CoII ions at the nodes connected through tp and L1 co‐ligands. Complex 2 is the first example of a four‐connected SrAl2 structure type ( sra , 42638 topology) with threefold interpenetration in CoII coordination frameworks, forming by bridging L2 and tp co‐ligands. In addition, the fluorescence and catalytic performances of the complexes for the degradation of methyl orange were investigated.  相似文献   

19.
The solvothermal reaction of Zn(OAc)2·2H2O with 3,3′‐(diazenediyl)dibenzoic acid (H2ADB) in H2O at 393 K afforded the title complex, [Zn(C14H8N2O4)(H2O)]n. The asymmetric unit contains half a ZnII cation, half an ADB ligand and half a water molecule. Each ZnII centre lies on a crystallographic twofold rotation axis and is five‐coordinated by four O atoms of bridging carboxylate groups from four ADB ligands and one O atom from a water molecule, forming a distorted trigonal–bipyramidal coordination geometry. The [Zn(H2O)] subunits are bridged by carboxylate groups to give one‐dimensional [Zn(μ‐COO)4(H2O)]n chains. The chains are linked by ADB ligands into two‐dimensional sheets, and these sheets are further connected to neighbouring sheets via hydrogen bonds (OW—HW...O), forming a three‐dimensional hydrogen‐bond‐stabilized structure with an unprecedented 374175262 topology.  相似文献   

20.
In the title coordination compound, [Cd(C14H8N2O4)(H2O)]n, the CdII cation and the coordinated water molecule lie on a twofold axis, whereas the ligand lies on an inversion center. The CdII center is five‐coordinated in a distorted square‐pyramidal geometry by four carboxylate O atoms from four different 4,4′‐diazenediyldibenzoate (ddb) anions and one water O atom. The three‐dimensional frameworks thus formed by the bridging ddb anions interpenetrate to generate a three‐dimensional PtS‐type network. Additionally, the coordination water molecule and the carboxylate O atom form a hydrogen‐bonding interaction, stabilizing the three‐dimensional framework structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号