首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
Taking advantage of computational chemistry, the best diamine for the synthesis of a multi‐dentate ligand from the reaction with 3‐(trimethoxysilyl) propylisocyanate (TEPI) was selected. Actually, predictive Density Functional Theory (DFT) calculations provided the right diamino chain, i.e. ethylenediamine, capable to sequester a palladium atom, together with the relatively polar solvent toluene, and then undergo the experiments as a selective catalytic agent. The ligand was then prepared and applied for the decoration of the halloysite (Hal) outer surface to furnish an efficient support for the immobilization of Pd nanoparticles. The resulting catalyst exhibited high catalytic activity for hydrogenation of nitroarenes. Moreover, it showed high selectivity towards nitro functional group. The study of the catalyst recyclability confirmed that the catalyst could be recycled for several reaction runs with only slight loss of the catalytic activity and Pd leaching. Hot filtration test also proved the heterogeneous nature of the catalysis.  相似文献   

2.
A novel catalytic nanocomposite, MNPs/Hal-POSS-HEMA-Pd, composed of halloysite nanoclay and polyhedral oligomeric silsesquioxane is reported. To synthesize the catalyst, magnetic halloysite was vinyl functionalized and then polymerized with 2-hydroxyethyl methacrylate and methacrylate polyhedral oligomeric silsesquioxane. Afterwards, the latter was palladated to furnish a heterogeneous catalyst with use for catalyzing the reductive degradation of organic dyes, Rhodamine B, and methyl orange with NaBH4. The kinetic and thermodynamic parameters of both reactions were estimated. The results asserted that low content of the catalyst could catalyze the dye reduction reactions to furnish hydrogenated product in quantitative conversion in a very short reaction times (1 min). It is assumed that both halloysite and polyhedral oligomeric silsesquioxane can contribute to the anchoring of Pd nanoparticles. On the other hand, the polymeric network around halloysite can furnish a microenvironment for bringing dyes in the vicinity of active sites. Moreover, unique tubular morphology of halloysite can effectively improve dye adsorption and consequently enhance dye reduction. Additionally, the study of the recyclability of the catalyst approved that it could be magnetically recovered and reused for ten successive reaction runs with trivial leach of Pd (2 wt.%) and decrement of the catalytic activity.  相似文献   

3.
Surface wettability of active sites plays a crucial role in the activity and selectivity of catalysts. This report describes modification of surface hydrophobicity of Pd/UiO‐66, a composite comprising a metal–organic framework (MOF) and stabilized palladium nanoparticles (NPs), using a simple polydimethylsiloxane (PDMS) coating. The modified catalyst demonstrated significantly improved catalytic efficiency. The approach can be extended to various Pd nanoparticulate catalysts for enhanced activity in reactions involving hydrophobic reactants, as the hydrophobic surface facilitates the enrichment of hydrophobic substrates around the catalytic site. PDMS encapsulation of Pd NPs prevents aggregation of NPs and thus results in superior catalytic recyclability. Additionally, PDMS coating is applicable to a diverse range of catalysts, endowing them with additional selectivity in sieving reactants with different wettability.  相似文献   

4.
Hydrothermal carbonization of salep as a domestic biosource was carried out to afford a biochar, BC, with exceptional catalytic activity. BC can be further magnetized by incorporation of magnetic nanoparticles to furnish a magnetic catalyst, BC‐Fe, with improved recovery and recyclability for the hydrogenation of nitroarenes in the absence of any precious metal. BC‐Fe was also applied as a catalyst support for the immobilization of Pd nanoparticles and development of an efficient, biocompatible and cost‐effective catalyst, Pd@BC‐Fe, with utility for the oxidation of benzyl alcohols under mild reaction condition in a selective manner to afford corresponding acids in high yields. The study of the recyclability of the catalyst confirmed high recyclability of Pd@BC‐Fe.  相似文献   

5.
β‐Cyclodextrin (β‐CD) and glycidyl methacrylate monomer were polymerized in the presence of functionalized halloysite nanoclay (Hal) to afford a polymeric network (Hal‐P‐CD) containing Hal and CD. Hal‐P‐CD was then applied as a catalyst support for the immobilization of Pd nanoparticles. The resulting nanocomposite, Pd@Hal‐P‐CD, could serve as a catalyst for the hydrogenation of nitrobenzene. The precise study by the preparation of control samples confirmed the contribution of CD as both phase transfer and capping agent, P (polymer) and Hal to the catalysis. Moreover, the results confirmed the importance of CD: glycidyl methacrylate monomer ratio. Pd@Hal‐P‐CD was also carbonized to prepare Pd@Hal‐C. Notably, the characterization of Pd@Hal‐C showed that carbonization led to the growth of mean diameter of Pd nanoparticles, increase of Pd content and partial destruction of Hal. However, the catalytic activity of Pd@Hal‐C was superior to Pd@Hal‐P‐CD. Pd@Hal‐C was also highly recyclable and could be recovered and recycled for several reaction runs. The study of the carbonization temperature showed that this factor affected the nature of the resulting carbon and the catalyst prepared at elevated temperature showed higher catalytic activity.  相似文献   

6.
Combining the excellent features of halloysite nanoclay and cyclodextrin, a novel hybrid system was designed and synthesized based on covalent attachment of tosylated cyclodextrin to thiosemicarbazide‐functionalized halloysite nanoclay and used for the immobilization of Pd nanoparticles. The resulting hybrid, Pd@HNTs‐T‐CD, was then characterized using various techniques, and successfully used for promoting copper‐ and ligand‐free Sonogashira coupling reactions of halobenzenes and acetylenes in a mixture of water and ethanol. Notably, under Pd@HNTs‐T‐CD catalysis, the reaction could proceed in relatively short reaction time to furnish the corresponding products in high yields. Additionally, the catalyst was recyclable and could be simply recovered and reused for several reaction runs. Results also established negligible leaching of Pd, indicating the efficiency of HNTs‐T‐CD for embedding Pd nanoparticles.  相似文献   

7.
In analogy to the role of long‐chain polyamines in biosilicification, poly‐L ‐lysine facilitates the assembly of nanocomponents to design multifunctional microcapsule structures. The method is demonstrated by the fabrication of a magnetically separable catalyst that accommodates Pd nanoparticles (NPs) as active catalyst, Fe3O4 NPs as magnetic component for easy recovery of the catalyst, and silica NPs to impart stability and selectivity to the catalyst. In addition, polyamines embedded inside the microcapsule prevent the agglomeration of Pd NPs and thus result in efficient catalytic activity in hydrogenation reactions, and the hydrophilic silica surface results in selectivity in reactions depending on the polarity of substrates.  相似文献   

8.
Various enzymatic reactions or enzymatic cascade reactions occur efficiently in biological microsystems due to space constraints or orderly transfer of intermediate products. Inspired by this, the horseradish peroxidase(HRP)-like nanozyme(Fe-aminoclay) was in situ synthesized on the surface of alkali-activated halloysite nanotubes and the natural enzyme(glucose oxidase, GOx) was immobilized on it to construct a high-efficiency GOx-Fe AC@AHNTs cascade nanoreactor. In which, Fe AC@AHNTs can not on...  相似文献   

9.
A novel heterogeneous catalyst is prepared through functionalization of halloysite nanotube with 1H‐1,2,3‐triazole‐5‐methanol and subsequent immobilization of silver nanoparticles through bio‐assisted approach using Arctiumplatylepis extract. The resulting catalyst, Ag@HNTs‐T, was characterized by using SEM/EDX, BET, XRD, FTIR, ICP‐AES, TGA, DTGA and elemental mapping analysis. Moreover, we computationally assessed metal‐ligand interactions in Ag@HNTs‐T complex model to interpret the immobilization behavior of silver nanoparticles on HNTs surface via quantum chemistry computations. The catalytic activity of the catalyst was studied for the synthesis of propargylamines via A3 and KA2 coupling reactions under ultrasonic irradiation. The results demonstrated that Ag@HNTs‐T could efficiently promote these reactions to furnish the corresponding products in high yields and short reaction times. The study of the recyclability of the catalyst and Ag(0) leaching confirmed that the catalyst was recyclability up to four reaction runs with slight Ag(0) leaching.  相似文献   

10.
In this paper, a highly active, air‐ and moisture‐stable and easily recoverable magnetic nanoparticles tethered mesoionic carbene palladium (II) complex (MNPs‐MIC‐Pd) as nanomagnetic catalyst was successfully synthesized by a simplistic multistep synthesis under aerobic conditions using commercially available inexpensive chemicals for the first time. The synthesized MNPs‐MIC‐Pd nanomagnetic catalyst was in‐depth characterized by numerous physicochemical techniques such as FT‐IR, ICP‐AES, FESEM, EDS, TEM, p‐XRD, XPS, TGA and BET surface area analysis. The prepared MNPs‐MIC‐Pd nanomagnetic catalyst was used to catalyze the Suzuki–Miyaura and Mizoroki–Heck cross‐coupling reactions and exhibited excellent catalytic activity for various substrates under mild reaction conditions. Moreover, MNPs‐MIC‐Pd nanomagnetic catalyst could be easily and rapidly recovered by applying an external magnet. The recovered MNPs‐MIC‐Pd nanomagnetic catalyst exhibited very good catalytic activity up to ten times in Suzuki–Miyaura and five times in Mizoroki–Heck cross‐coupling reactions without considerable loss of its catalytic activity. However, MNPs‐MIC‐Pd nanomagnetic catalyst shows notable advantages such as heterogeneous nature, efficient catalytic activity, mild reaction conditions, easy magnetic work up and recyclability.  相似文献   

11.
Scientific interest in carbon-based materials (CBMs) has grown dramatically over the past few decades. Due to a variety of atomic orbital hybrid forms (sp, sp2 and sp3 hybridization), carbon can form a variety of materials with diverse structures and characteristics. CBMs used as efficient catalyst supports show extensive promise in organic reactions, which is attributed to their structural similarity with organics, large specific surface area, chemical stability, and photocatalytic properties. This review presents the synthesis of CBM-supported palladium nanocatalysts based on impregnation, template methods, etc. The CBMs include activated carbon (AC), graphene, carbon nanotubes (CNTs), and their functionalized products, as supports for improving the activity and recyclability of simple Pd nanocatalysts. After surveying the literature where these catalysts have been utilized for carbon–carbon coupling reactions, there is a particular emphasis on Suzuki, Heck, and Sonogashira reactions. The catalytic mechanism of these Pd nanocatalysts (surface heterogeneous catalysis or homogeneous catalysis caused by Pd leaching) is discussed in detail, especially the effect of Pd leaching on the stability of the catalyst.  相似文献   

12.
Hollow magnetic nanoparticles (MNPs) with tetrahedral morphology were synthesized and then covered by a shell prepared by coating with melamine–formaldehyde followed by the introduction of glucose‐derived carbon. Subsequently, Pd nanoparticles were immobilized and the core–shell nanocomposite was carbonized. The obtained magnetic catalyst was successfully applied for the hydrogenation of nitroarenes in aqueous media. To investigate the effects of the morphology of MNPs, the nature of carbon shell, and the order of incorporation of Pd nanoparticles, several control catalysts, including the MNPs with different morphologies (disc‐like and cylinder); MNPs coated with different shells (sole glucose‐derived carbon or melamine–formaldehyde carbon shell); and a nanocomposite, in which Pd was immobilized after carbonization, were prepared and examined as catalyst for the model reaction. To justify the observed different catalytic activities of the catalysts, their Pd loadings, leaching, and specific surface areas were compared. The results confirmed that tetrahedral MNPs coated with porous N‐rich carbon shell exhibited the best catalytic activity. The high catalytic activity of this catalyst was attributed to its high surface area and the interaction of N‐rich shell with Pd nanoparticles that led to the higher Pd loading and suppressed Pd leaching.  相似文献   

13.
Poly(4-vinylpyridine-co-N-vinylpyrrolidone)(VPy-co-NVP) and its palladium complex (VPy–NVP–Pd) were prepared. The palladium complex was used as catalyst for the hydrogenation of some nitroaromatics. The molar content of VPy units in VPy-co-NVP was determined as 31.25% by 1H NMR. VPy–NVP–Pd can be easily resolved in ethanol forming a homogeneous catalytic hydrogenation system together with substrates. The optimum catalytic activity for hydrogenation of nitrobenzene appeared when VPy/Pd molar ratio was 2. The catalytic behavior of the catalyst was found to be greatly affected by the type and concentration of added alkalies. The highest hydrogenation rate for nitrobenzene was found in a 0.1 mol/l ethanol solution of potassium hydroxide. The catalytic stability was examined by using nitrobenzene and 4-nitroanisole as substrates.  相似文献   

14.
Nanometer‐sized magnetic stirring bars containing Pd nanoparticles (denoted as Fe3O4‐NC‐PZS‐Pd) for heterogeneous catalysis in microscopic system were prepared through a facile two‐step process. In the hydrogenation of styrene, Fe3O4‐NC‐PZS‐Pd showed an activity similar to that of the commercial Pd/C catalyst, but much better stability. In microscopic catalytic systems, Fe3O4‐NC‐PZS‐Pd can effectively stir the reaction solution within microdrops to accelerate mass transfer, and displays far better catalytic activity than the commercial Pd/C for the hydrogenation of methylene blue in an array of microdroplets. These results suggested that the Fe3O4‐NC‐PZS‐Pd could be used as nanoscale stirring bars in nanoreactors.  相似文献   

15.
通过氨基离子液体改性石墨烯,并将其固载于堇青石表面,作为负载型Pd催化剂的载体.所制备的Pd催化剂经加氢老化后,表面石墨烯呈草簇状结构,将Pd纳米粒子限域于片层内,有效防止了Pd的流失和团聚.在重要的工业反应对羧基苯甲醛(4-CBA)加氢中,此结构催化剂与传统的钯碳催化剂相比,表现出很好的稳定性  相似文献   

16.
In aqueous medium without any other additives, palladium (Pd) nanoparticles with water‐soluble polyvinyl alcohol (PVA) as stabilizer were synthesized for the catalytic hydrogenation of nitrobenzene. Under the optimum experimental conditions, the nitrobenzene conversion and the selectivity for aniline were 99.3 % and 100 %, respectively. Comprehensive characterization methods, including TEM, UV/Vis, confocal laser scanning microscopy (CLSM), XRD and XPS allowed a better understanding of the role of PVA aggregates and the properties of Pd nanoparticles. The nitrobenzene conversion exceeded 80 % even after 6 cycles without any treatment of the catalyst. A mechanism about the hydrogenation of nitrobenzene catalyzed by Pd/PVA system was proposed. The Pd/PVA catalyst also exhibited excellent activity and selectivity, particularly to ortho‐fluoronitrobenzene and ortho‐nitrotoluene. This research can provide a reference for the environmentally friendly catalysis for hydrogenation of nitrobenzene and other substituted nitrobenzene compounds.  相似文献   

17.
Polysiloxane-encapsulated "Pd"-nanoclusters were generated by reduction of Pd(OAc)(2) with polymethylhydrosiloxane, which functions as a reducing agent as well as a capping material for production and stabilization of catalytically active "Pd"-nanoparticles. Chemoselective hydrogenation of functional conjugated alkenes was achieved by in-situ- or ex-situ-generated polysiloxane-stabilized "Pd"-nanoclusters under mild reaction conditions in high yields. Electron microscopy, UV-vis, and NMR studies of the reaction mixture during the catalytic transformation were performed and, in conjunction with catalyst poisoning experiments, demonstrated unequivocally the role of polysiloxane-encapsulated "Pd"-nanoclusters as the real catalytic species. The recyclability of the "Pd"-nanoclusters was established by reusing the solid left after the reaction.  相似文献   

18.
Water‐borne phosphine‐functionalized core‐cross‐linked micelles ( CCM ) consisting of a hydrophobic core and a hydrophilic shell were obtained as stable latexes by reversible addition–fragmentation chain transfer (RAFT) in water in a one‐pot, three‐step process. Initial homogeneous aqueous‐phase copolymerization of methacrylic acid (MAA) and poly(ethylene oxide) methyl ether methacrylate (PEOMA) is followed by copolymerization of styrene (S) and 4‐diphenylphosphinostyrene (DPPS), yielding P(MAA‐co‐PEOMA)‐b‐P(S‐co‐DPPS) amphiphilic block copolymer micelles ( M ) by polymerization‐induced self‐assembly (PISA), and final micellar cross‐linking with a mixture of S and diethylene glycol dimethacrylate. The CCM were characterized by dynamic light scattering and NMR spectroscopy to evaluate size, dispersity, stability, and the swelling ability of various organic substrates. Coordination of [Rh(acac)(CO)2] (acac=acetylacetonate) to the core‐confined phosphine groups was rapid and quantitative. The CCM and M latexes were then used, in combination with [Rh(acac)(CO)2], to catalyze the aqueous biphasic hydroformylation of 1‐octene, in which they showed high activity, recyclability, protection of the activated Rh center by the polymer scaffold, and low Rh leaching. The CCM latex gave slightly lower catalytic activity but significantly less Rh leaching than the M latex. A control experiment conducted in the presence of the sulfoxantphos ligand pointed to the action of the CCM as catalytic nanoreactors with substrate and product transport into and out of the polymer core, rather than as a surfactant in interfacial catalysis.  相似文献   

19.
郝燕  王帅  孙蔷  石磊  陆安慧 《催化学报》2015,(4):612-619
负载型贵金属纳米催化剂中的金属纳米粒子易发生团聚或流失,因此提高金属活性组分的分散性和稳定性很重要。我们报道了一种制备高分散钯纳米催化剂的方法,通过浸泡法将氯钯酸前驱体负载到苯并噁嗪聚合物上,再经过惰性气氛一步热解得到纳米炭球担载钯催化剂.催化剂性能通过温和条件下苯甲醇氧化反应进行评价.经过500℃热处理制备的催化剂,从TEM图可以看出Pd纳米粒子均匀分散在载体上,尺寸大小约为3 nm,这是由于载体和钯活性组分的配位作用有利于提高钯纳米粒子的分散性和稳定性.通过调控金属负载量及负载时间,尽可能地实现活性组分分布在载体外表面,制备的催化剂上最高TOF为690 h-1.此催化剂同时具有较好的循环稳定性,失活后的催化剂经过200℃焙烧即可实现再生.  相似文献   

20.
A new polymer‐anchored Pd(II) Schiff base complex has been prepared and characterized using scanning electron microscopy, elemental analysis, atomic absorption spectroscopy, TGA and spectrometric methods such as diffuse reflectance spectra of solid and FT‐IR spectroscopy. This polymer‐anchored palladium catalyst shows excellent catalytic activity in the liquid‐phase hydrogenation reaction of styrene oxide to obtain selectively 2‐phenylethanol at normal pressure of hydrogen gas (1 atm.) at room temperature in DMF medium. We have also studied the liquid‐phase hydrogenation reaction of various organic substrates. The catalyst exhibits excellent catalytic activity for the Suzuki cross‐coupling of various substituted and non‐substituted aryl halides. The influences of various parameters were investigated to optimize reaction conditions. The reusability experiments show that the catalyst can be used five times without much loss in catalytic activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号