首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water pollution by polychlorinated aromatic hydrocarbons has always been a global issue. In this work, we reported a synthesis of supported palladium catalysts Pd/C, Pd/CeO2, Pd/SBA‐15, Pd/ZrO2,Pd/SiO2, and Pd/Al2O3 as well as their catalytic activities on hydrodechlorination (HDC) of 1,2,4,5‐tetrachlorobenzene (TeCB). These Pd catalysts were characterized by Brunauer‐Emmett‐Teller (BET) specific surface area, Transmission electron microscopy (TEM), X‐ray diffraction (XRD), energy Dispersive X‐ray Fluorescence (EDXRF), CO‐chemisorption, and H2‐temperature programmed reduction (H2‐TPR) analysis. Pd/C, Pd/CeO2 and Pd/SBA‐15 catalysts showed relatively high catalytic activities. The catalytic activities were associated with dispersion of Pd, metal surface area, and reaction temperature, etc.  相似文献   

2.
《中国化学会会志》2018,65(2):205-211
Zn3(BTC)2 metal‐organic frameworks as recyclable and heterogeneous catalysts were effectively used to catalyze the synthesis of benzimidazole derivatives from o‐phenylendiamine and aldehydes in ethanol. This method provides 2‐aryl‐1H‐benzimidazoles in good to excellent yields with little catalyst loading. The catalyst was characterized using different techniques such as X‐ray diffraction (XRD), energy dispersive X‐ray (EDX) analysis, scanning electron microscopy (SEM), and Fourier transform infrared (FT‐IR) spectroscopy.  相似文献   

3.
A novel flower like 3D nickel/manganese dioxide (Ni/MnO2) nanocomposite was synthesized by a kind of simple electrochemical method and the formation mechanism of flower like structure was also researched. In addition, morphology and composition of the nanocomposite were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS). Then the Ni/MnO2 nanocomposites were applied to fabricate electrochemical non‐enzymatic glucose sensor. The electrochemical investigation for the sensor indicated that it possessed an excellent electrocatalytic property for glucose, and could applied to the quantification of glucose with a linear range from 2.5×10?7 to 3.5×10?3 M, a sensitivity of 1.04 mA mM?1 cm?2, and a detection limit of 1×10?7 M (S/N=3). The proposed sensor also presented attractive features such as interference‐free, and long‐term stability. The present study provided a general platform for the one‐step synthesis of nanomaterials with novel structure and can be extended to other optical, electronic and magnetic nanocompounds.  相似文献   

4.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

5.
A novel and task‐specific nano‐magnetic Schiff base ligand with phosphate spacer using 2‐aminoethyl dihydrogen phosphate instead of usual coating agents, i.e. tetraethoxysilane and 3‐aminopropyltriethoxysilane, for coating of nano‐magnetic Fe3O4 is introduced. The nano‐magnetic Schiff base ligand with phosphate spacer as a novel catalyst was synthesized and fully characterized using infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, thermogravimetry, derivative thermogravimetry, vibrating sample magnetometry, atomic force microscopy, X‐ray photoelectron spectroscopy and energy‐dispersive X‐ray spectroscopy. The resulting task‐specific nano‐magnetic Schiff base ligand with phosphate spacer was successfully employed as a magnetite Pd nanoparticle‐supported catalyst for Sonogashira and Mizoroki–Heck C–C coupling reactions. To the best of our knowledge, this is the first report of the synthesis and applications of magnetic nanoparticles of Fe3O4@O2PO2(CH2)2NH2 as a suitable spacer for the preparation of a designable Schiff base ligand and its corresponding Pd complex. So the present work can open up a new and promising insight in the course of rational design, synthesis and applications of various task‐specific magnetic nanoparticle complexes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A novel Se/C nanocomposite with core‐shell structures has been prepared through a facile one‐pot microwave‐induced hydrothermal process. The new material consists of a trigonal‐Se (t‐Se) core and an amorphous‐C (a‐C) shell. The Se/C composite can be converted to hollow carbon capsules by thermal treatment. These products were characterized by transmission electron microscopy (TEM), powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), selected area electron diffraction (SAED), energy‐dispersive X‐ray (EDX) spectroscopy, and X‐ray photoelectron spectroscopy (XPS).  相似文献   

7.
In this study, a novel magnetic mesoporous MCM‐41 silica supported ionic liquid/palladium complex (Fe3O4@MCM@IL/Pd) with core‐structure was prepared and characterized and its catalytic performance was developed under green conditions. The Fe3O4@MCM@IL/Pd was prepared via a post grafting method and was characterized using Fourier transform infrared spectroscopy, thermal gravimetric analysis, wide‐ and low‐angle powder X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, vibration sample magnetometer and energy‐dispersive X‐ray analyses. This was applied as an efficient and recoverable nanocatalyst for the one‐pot synthesis of pyrano[2,3‐d]pyrimidine derivatives under ultrasonic conditions. The catalyst was magnetically recovered and reused for 12 consecutive cycles without significant loss of its activity and selectivity.  相似文献   

8.
In this paper, we report a simple, facile and efficient method for the synthesis of Fe3O4/SiO2‐DTZ‐Pd. The immobilized palladium was an efficient catalyst without addition of phosphine ligands for Stille, Heck and N‐arylation reactions. This method has some advantages such as high yields and easy work up of products. In addition, the catalyst can be recovered using a magnet and reused several times without significant loss of its catalytic activity. This catalyst was characterized by various physico‐chemical techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and inductively coupled plasma (ICP).  相似文献   

9.
NiAl2O4 spinel nanocrystals were synthesized as mesoporous catalysts and were fully characterized using Fourier‐transform infrared spectroscopy (FT‐IR), X‐ray diffraction patterns (XRD), scanning electron microscopy (SEM), and Energy‐dispersive X‐ray spectroscopy (EDS). These nanocrystals catalyzed the synthesis of 2,3‐dihydroquinazolin‐4(1H)‐one derivatives via a one‐pot, three‐component condensation reaction of aromatic aldehydes, isatoic anhydride, and ammonium acetate or primary aromatic amine under microwave irradiation. By far, the most obvious advantages of the offered process are efficiency and recyclability of the catalyst as well as a significantly shorter reaction time.  相似文献   

10.
A simple, efficient and environmentally benign route was developed for the preparation of spiro(indoline‐3,4‐pyrano[2,3‐c ]pyrazole) derivatives with good yields from condensation of isatins, malononitrile (or ethyl cyanoacetate), hydrazine hydrate and ethyl acetoacetate catalysed by PFu@Fe3O4 nanocomposite. The use of easily available catalyst, shorter reaction times, better yields, simplicity of reaction, heterogeneous system and easy work‐up are the advantages of the method presented. Characterization of the catalyst was performed using Fourier transform infrared spectroscopy, X‐ray diffraction and transmission electron microscopy.  相似文献   

11.
CoFe2O4@SiO2‐CPTES‐Guanidine‐Cu(II) magnetic nanoparticles were synthesized and used as a new, inexpensive and efficient heterogeneous catalyst for the synthesis of polyhydroquinolines and 2,3‐dihydroquinazoline‐4(1H)‐ones and for the oxidation of sulfides. The structure of this nanocatalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, X‐ray diffraction and inductively coupled plasma optical emission spectrometry. Simple preparation, high catalytic activity, simple operation, high yields, use of green solvents, easy magnetic separation and reusability of the catalyst are some of the advantages of this protocol.  相似文献   

12.
The Fe3O4 magnetic particles were modified with 1,10‐phenanthroline‐5,6‐diol (Phen) and the related Mn complex (Fe3O4@Phen@Mn) synthesized as a heterogeneous catalyst to be used for the one‐pot three‐component synthesis of various tetrazoles. The catalysts were characterized by several methods, such as the elemental analysis, FT‐IR, X‐ray powder diffraction, dispersive X‐ray spectroscopy, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, thermogravimetric‐differential thermal analysis, vibrating sample magnetometer and X‐ray photoelectron spectroscopy. In addition, the antioxidant and antibacterial activities of the catalyst and its Phen ligand were in vitro screened with 2,2‐diphenyl‐1‐picrylhydrazyl by free radical scavenging methods. Results showed that the synthesized compounds possess strong antioxidant activity (IC50; 0.172  ±  0.005 mg ml?1) as well as a good antibacterial potential in comparison to standards.  相似文献   

13.
《中国化学会会志》2018,65(9):1082-1089
In this work, a screen‐printed carbon electrode (SPCE) was modified with a cobalt/porous silicon (Co@PSi) nanocomposite powder to develop a nonenzymatic sensor for the detection of hydrogen peroxide. The Co@PSi nanocomposite was synthesized through the chemical reaction between silicon powder in a HF/HNO3 solution and cobalt cations. In this process, cobalt nanoparticles were anchored on the porous silicon. The structure and morphology of the synthesized nanocomposite were investigated by X‐ray diffraction, Fourier transform infrared spectroscopy, X‐ray photoemission spectroscopy, energy dispersive X‐ray spectroscopy, and field‐emission scanning electron microscopy. The constructed nonenzymatic, screen‐printed sensors based on the Co@PSi nanocomposite showed perfect electrocatalytic oxidation response to hydrogen peroxide over the range 1–170 and 170–3,770 μmol/L with the limit of detection of 0.8 μmol/L. In addition, the Co@PSi‐SPCE sensor exhibited good selectivity for the determination of H2O2 in the presence of common interfering species including glucose, ascorbic acid, uric acid, dopamine, nitrate, and nitrite ions. The constructed electrochemical sensor was successfully used for the determination of H2O2 in real samples.  相似文献   

14.
A palladium–fibroin complex (Pd/Fib.) was prepared by the addition of sonicated fibroin fiber in water to palladium acetate solution. Pd (OAc)2 was absorbed by fibroin and reduced with NaBH4 at room temperature to the Pd(0) nanoparticles. Powder‐X‐ray diffraction, scanning electron microscopy–energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, CHN elemental analysis and inductively coupled plasma‐atomic emission spectroscopy were carried out to characterize the Pd/Fib. catalyst. Catalytic activity of this finely dispersed palladium was examined in the Heck coupling reaction. The catalytic coupling of aryl halides (‐Cl, ‐Br, ‐I) and olefins led to the formation of the corresponding coupled products in moderate to high yields under air atmosphere. A variety of substrates, including electron‐rich and electron‐poor aryl halides, were converted smoothly to the targeted products in simple procedure. Heterogeneous supported Pd catalyst can be recycled and reused several times.  相似文献   

15.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

16.
A magnetically separable NiFe2O4@GO–Pd composite (GO = graphene oxide) was successfully prepared by a facile one‐pot hydrothermal strategy. This new kind of hybrid material was fully characterized using powder X‐ray diffraction, Raman spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy and vibrating sample magnetometry. Structural characterizations confirmed the formation of NiFe2O4 and Pd nanocrystals, and the close anchoring between nanoparticles and GO sheets. Additionally, the as‐prepared NiFe2O4@GO–Pd nanocomposite was effectively employed in the palladium‐catalyzed Heck reaction in an ethanol–water system as a green solvent. The catalyst was completely recoverable with the simple application of an external magnetic field and with no obvious loss of catalytic activity even after six repeated cycles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
《中国化学会会志》2018,65(7):875-882
Hollow Fe3O4@TiO2‐NH2/Pd as a light‐weight, magnetically heterogeneous catalyst was successfully prepared, and characterized by using different techniques including X‐ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX), vibrating sample magnetometer (VSM) measurements, and thermogravimetric analysis (TGA). Then this heterogeneous catalyst was tested in the Suzuki cross‐coupling reaction, and the results confirmed the success of this method. The catalyst could be separated easily using an external magnet and reused at least in five runs successfully without any appreciable loss in its catalytic activity.  相似文献   

18.
Well distributed Pd‐Cu bimetallic alloy nanoparticles supported on amine‐terminated ionic liquid functional three‐dimensional graphene (3D IL‐rGO/Pd‐Cu) as an efficient catalyst for Suzuki cross‐coupling reaction has been prepared via a facile synthetic method. The introduction of IL‐NH2 cations on the surface of graphene sheets can effectively avoid the re‐deposition of graphene sheets, allowing the catalyst to be reused up to 10 cycles. The addition of Cu not only saves cost but also ensures high catalytic efficiency. It is worthy to note that the catalyst 3D IL‐rGO/Pd2.5Cu2.5 can efficiently catalyze the Suzuki cross‐coupling reaction with the yield up to 100% in 0.25 h, almost one‐fold higher than that by the pristine IL‐rGO/Pd2.5 catalyst (52%). The Powder X‐Ray Diffraction (XRD), combining energy dispersive X‐ray spectroscopy (EDS) mapping results confirm the existence and distribution of Pd and Cu in the bimetallic nanoparticles. The transmission electron microscopy (TEM) reveals the nanoparticle size with an average diameter of 3.0 ± 0.5 nm. X‐ray photoelectron spectroscopy (XPS) analysis proved the presence of electron transfer from Cu to Pd upon alloying. Such alloying‐induced electronic modification of Pd‐Cu alloy and 3D ionic liquid functional graphene with large specific surface area both accounted for the catalytic enhancement.  相似文献   

19.
In the present work, a new protocol was introduced for the preparation of an efficient hybrid nanocatalyst ZnS‐ZnFe2O4 via the co‐precipitation method as well as its application in the synthesis of 2,4,5‐triaryl‐1H‐imidazoles derivatives starting from various aromatic aldehydes, benzil and ammonium acetate under ultrasonic irradiation in ethanol. ZnS‐ZnFe2O4 was characterized by Fourier transform infrared (FT‐IR) spectroscopy, energy‐dispersive X‐ray spectroscopy (EDS) analysis, scanning electron microscopy (SEM) image, X‐ray diffraction (XRD) pattern and vibrating sample magnetometer (VSM) curve. This method has advantages such as high efficiency of the heterogeneous catalyst, the use of environmentally‐friendly solvent, high yields, short reaction times and easy isolation of the products and chromatography‐free purification. Our outcomes illustrated that the present nanocatalyst with nearly spherical and Cauliflower‐like morphology and average particle size of 36 nm could be applied as an effective and magnetically recyclable catalyst without any significant decreasing of activity. Furthermore, the synergic effect of bimetallic Lewis acids was studied for the synthesis of imidazole derivatives.  相似文献   

20.
Pt alloy nanostructures show great promise as electrocatalysts for the oxygen reduction reaction (ORR) in fuel cell cathodes. Herein, three‐dimensional (3D) Pt‐Pd‐Co trimetallic network nanostructures (TNNs) with a high degree of alloying are synthesized through a room temperature wet chemical synthetic method by using K2PtCl4/K3Co(CN)6–K2PdCl4/K3Co(CN)6 mixed cyanogels as the reaction precursor in the absence of surfactants and templates. The size, morphology, and surface composition of the Pt‐Pd‐Co TNNs are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected‐area electron diffraction (SAED), energy dispersive spectroscopy (EDS), EDS mapping, X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy (XPS). The 3D backbone structure, solid nature, and trimetallic properties of the mixed cyanogels are responsible for the 3D structure and high degree of alloying of the as‐prepared products. Compared with commercially available Pt black, the Pt‐Pd‐Co TNNs exhibit superior electrocatalytic activity and stability towards the ORR, which is ascribed to their unique 3D structure, low hydroxyl surface coverage and alloy properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号