首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Five examples of unsymmetrical 1,2‐bis (arylimino) acenaphthene ( L1 – L5 ), each containing one N‐2,4‐bis (dibenzocycloheptyl)‐6‐methylphenyl group and one sterically and electronically variable N‐aryl group, have been used to prepare the N,N′‐nickel (II) halide complexes, [1‐[2,4‐{(C15H13}2–6‐MeC6H2N]‐2‐(ArN)C2C10H6]NiX2 (X = Br: Ar = 2,6‐Me2C6H3 Ni1 , 2,6‐Et2C6H3 Ni2 , 2,6‐i‐Pr2C6H3 Ni3 , 2,4,6‐Me3C6H2 Ni4 , 2,6‐Et2–4‐MeC6H2 Ni5 ) and (X = Cl: Ar = 2,6‐Me2C6H3 Ni6 , 2,6‐Et2C6H3 Ni7 , 2,6‐i‐Pr2C6H3 Ni8 , 2,4,6‐Me3C6H2 Ni9 , 2,6‐Et2–4‐MeC6H2 Ni10 ), in high yield. The molecular structures Ni3 and Ni7 highlight the extensive steric protection imparted by the ortho‐dibenzocycloheptyl group and the distorted tetrahedral geometry conferred to the nickel center. On activation with either Et2AlCl or MAO, Ni1 – Ni10 exhibited very high activities for ethylene polymerization with the least bulky Ni1 the most active (up to 1.06  ×  107 g PE mol?1(Ni) h?1 with MAO). Notably, these sterically bulky catalysts have a propensity towards generating very high molecular weight polyethylene with moderate levels of branching and narrow dispersities with the most hindered Ni3 and Ni8 affording ultra‐high molecular weight material (up to 1.5  ×  106 g mol?1). Indeed, both the activity and molecular weights of the resulting polyethylene are among the highest to be reported for this class of unsymmetrical 1,2‐bis (imino)acenaphthene‐nickel catalyst.  相似文献   

2.
Five examples of nickel(II) bromide complexes bearing N,N‐imino‐cyclopenta[b ]pyridines, [7‐(ArN)‐6,6‐Me2C8H5N]NiBr2 (Ar = 2,6‐Me2C6H3 ( Ni1 ), 2,6‐Et2C6H3 ( Ni2 ), 2,6‐i‐ Pr2C6H3 ( Ni3 ), 2,4,6‐Me3C6H2 ( Ni4 ), 2,6‐Et2‐4‐MeC6H2 ( Ni5 )), have been prepared by the reaction of the corresponding ligand, L1 – L5 , with NiBr2(DME) (DME = 1,2‐dimethoxyethane). On crystallization from bench dichloromethane, Ni1 underwent adventitious reaction with water to give the aqua salt, [ L1 NiBr(OH2)3][Br] ( Ni1' ). The molecular structures of Ni1' and Ni3 have been structurally characterized, the latter revealing a bromide‐bridged dimer. On activation with either MMAO or Et2AlCl, Ni1 , Ni2 , Ni4, and Ni5 , all exhibited high activities for ethylene polymerization (up to 3.88 × 106 g(PE) mol?1(Ni) h?1); the most sterically bulky Ni3 gave only low activity. Polyethylene waxes are a feature of the materials obtained which typically display low molecular weights (M ws), narrow M w distributions and unsaturated vinyl and vinylene functionalities. Notably, the catalyst comprising Ni1 /Et2AlCl produced polyethylene with the lowest M w, 0.67 kg mol?1, which is less than any previously reported data for any class of cycloalkyl‐fused pyridine–nickel catalyst. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3494–3505  相似文献   

3.
The bis(arylimino)pyridines, 2‐[CMeN{2,6‐{(4‐FC6H4)2CH}2–4‐NO2}]‐6‐(CMeNAr)C5H3N (Ar = 2,6‐Me2C6H3 L1 , 2,6‐Et2C6H3 L2 , 2,6‐i‐Pr2C6H3 L3 , 2,4,6‐Me3C6H2 L4 , 2,6‐Et2–4‐MeC6H2 L5 ), each containing one N′‐2,6‐bis{di(4‐fluorophenyl)methyl}‐4‐nitrophenyl group, have been synthesized by two successive condensation reactions from 2,6‐diacetylpyridine. Their subsequent treatment with anhydrous cobalt (II) chloride gave the corresponding N,N,N′‐CoCl2 chelates, Co1 – Co5 , in excellent yield. All five complexes have been characterized by 1H/19F NMR and IR spectroscopy as well as by elemental analysis. In addition, the molecular structures of Co1 and Co3 have been determined and help to emphasize the differences in steric properties imposed by the inequivalent N‐aryl groups; distorted square pyramidal geometries are adopted by each complex. Upon activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), precatalyts Co1 – Co5 collectively exhibited very high activities for ethylene polymerization with 2,6‐dimethyl‐substituted Co1 the most active (up to 1.1 × 107 g (PE) mol?1 (Co) h?1); the MAO systems were generally more productive. Linear polyethylenes of exceptionally high molecular weight (Mw up to 1.3 × 106 g mol?1) were obtained in all cases with the range in dispersities exhibited using MAO as co‐catalyst noticeably narrower than with MMAO [Mw/Mn: 3.55–4.77 ( Co1 – Co5 /MAO) vs. 2.85–12.85 ( Co1 – Co5 /MMAO)]. Significantly, the molecular weights of the polymers generated using this class of cobalt catalyst are higher than any literature values reported to date using related N,N,N‐bis (arylimino)pyridine‐cobalt catalysts.  相似文献   

4.
A series of 8‐(2,6‐dibenzhydryl‐4‐R‐phenylimino)‐5,6,7‐trihydroquinoline ligands have been prepared in which the nature of 4‐R substitutions vary from electron withdrawing to electron donating. The treatment with NiCl2.6H2O or (DME)NiBr2 afforded the corresponding complexes of nickel chloride (4‐R = Me Ni1 , Et Ni2 , tBu Ni3 , CHPh2 Ni4 , Cl Ni5 , and F Ni6 ) and nickel bromide (4‐R = Me Ni7 , Et Ni8 , tBu Ni9 , CHPh2 Ni10 , Cl Ni11 , and F Ni12 ). X‐ray diffraction study of complexes Ni3 , Ni6 , and Ni10 , revealed that Ni3.1/2H2O and Ni6.H2O adopted unsymmetrical and symmetrical chloride‐bridged dinuclear structures respectively, while Ni10.H2O is found as mononuclear specie forming distorted‐square planer geometry. In the presence of either diethylaluminum chloride (Et2AlCl) or modified methylaluminoxane (MMAO), all the nickel complexes ( Ni1–Ni12 ) displayed high activities (up to 1.91 × 106 g(PE) mol (Ni)−1h−1. Highly branched polyethylene waxes with low molecular weights (Mw ≤ 2.6 kg/mol) and narrow molecular weights distributions (Mw/Mn ≤ 1.96) incorporated with vinylene and vinyl groups were obtained. The effects of 4‐R substitutions to the nickel chloride and bromide pre‐catalysts and reaction conditions on the catalytic performance and the properties of the resulting polyethylene were the subject of a detail investigation. The positive influences of using electron‐withdrawing 4‐R substitutions and bromides were observed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1269–1281  相似文献   

5.
The unsymmetrical bis (arylimino)pyridines, 2‐[CMeN{2,6‐{(4‐FC6H4)2CH}2–4‐t‐BuC6H2}]‐6‐(CMeNAr)C5H3N (Ar = 2,6‐Me2C6H3 L1 , 2,6‐Et2C6H3 L2 , 2,6‐i‐Pr2C6H3 L3 , 2,4,6‐Me3C6H2 L4 , 2,6‐Et2–4‐MeC6H2 L5 ), each containing one N‐aryl group bedecked with ortho‐substituted fluorobenzhydryl groups, have been employed in the preparation of the corresponding five‐coordinate cobalt (II) chelates, LCoCl2 ( Co1 – Co5 ); the symmetrical comparator [2,6‐{CMeN(2,6‐(4‐FC6H4)2CH)2–4‐t‐BuC6H2}2C5H3N]CoCl2 (Co6) is also reported. All cobaltous complexes are paramagnetic and have been characterized by 1H/19F NMR spectroscopy, FT‐IR spectroscopy and elemental analysis. The molecular structures of Co3 and Co6 highlight the different degrees of steric protection given to the metal center by the particular N‐aryl group combination. Depending on the aluminoxane co‐catalyst employed to activate the cobalt precatalyst, distinct variations in thermal stability and activity of the catalyst towards ethylene polymerization were exhibited. In particular with MAO, the resultant catalysts reached their optimal performance at 70 °C delivering high activities of up to 10.1 × 106 g PE (mol of Co)?1 h?1 with Co1  >  Co4  >  Co2  >  Co5  >  Co3 >>  Co6 . On the other hand, using MMAO, the catalysts operate most effectively at 30 °C but are by comparison less productive. In general, the polyethylenes were highly linear, narrowly disperse and displayed a wide range of molecular weights [Mw range: 18.5–58.7 kg mol?1 (MAO); 206.1–352.5 kg mol?1 (MMAO)].  相似文献   

6.
A series of 8‐(arylimino)‐5,6,7‐trihydroquinolines ligand pendant fluorenyl group at N‐aryl ring, and their nickel complexes ( Ni1 ? Ni5 ) have been prepared and characterized. Once activated with Et2AlCl, the complexes Ni1 , Ni2 , and Ni3 bearing ligands from para‐fluorenylaniline produced unimodal polyethylenes; on the contrary complexes Ni4 and Ni5 gave bimodal polyethylenes due to steric influence of ligands from ortho‐fluorenyl anilines. With a increment of Et2Zn/ Ni4 ratio from 0 to 400, the distinct bimodel polyethylenes were obtained with molecular weights shifted from 14.3 to 57.6 kg·mol?1; apart shiftment to higher molecular weights, the portion of low molecular weight decreased along with higher portion of high molecular weight. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1910–1919  相似文献   

7.
两种镍的配合物[Ni(NH2CH2CH2CH2NH2)3]Cl2 (1)和[Ni(C6H4N2H4)2Cl2] (2)已经被合成并且通过红外和单晶X射线衍射分析对其进行了表征。在配合物1中,镍原子处于手性假八面体[NiN6]的几何构型中,它与三个1,3-丙二胺分子形成了三个六元环。在配合物2中,镍原子除了与两个o-苯二胺分子通过四个Ni-N键形成两个五元环外,它还与两个Cl原子配位形成了反式Ni-Cl2,这不同于以往报道过的镍的二胺配合物。这两个镍的配合物被MAO, MMAO或Et2AlCl活化后,对乙烯的二聚合或三聚合显示了很好的催化活性[对于配合物2,催化活性达到3.59×106 g mol-1 (Ni) h-1]。  相似文献   

8.
Novel Ni(II) complexes of 2‐(1H–benzimidazol‐2‐yl)‐phenol derivatives (HLx: x  =  1–5; C1–C5 ) have been synthesized and characterized. In the mononuclear complexes, the ligands were coordinated as bidentate, via one imine nitrogen and the phenolate oxygen atoms. The structures of the compounds were confirmed on the basis of FT‐IR, UV–Vis, 1H‐, 13C–NMR, inductively coupled plasma and elemental analyses (C, H and N). The purity of these compounds was ascertained by melting point (m.p.) and thin‐layer chromatography. The geometry optimization and vibrational frequency calculations of the compounds were performed using Gaussian 09 program with B3LYP/TZVP level of theory. All Ni(II) complexes were activated with diethylaluminum chloride (Et2AlCl), so that C2 showed the highest activity [6600 kg mol?1 (Ni) h?1], where the ligand contains a chlorine substituent. Oligomers obtained from the complexes consist mainly of dimer and trimer, and also exhibit high selectivity for linear 1‐butene and 1‐hexene. Both the steric and electronic effects of coordinative ligands affect the catalytic activity and the properties of the catalytic products.  相似文献   

9.
The novel title hybrid isomorphous organic–inorganic mixed‐metal dichromates, [Ni(Cr2O7)(C10H8N2)2] and [Cu(Cr2O7)(C10H8N2)2], have been synthesized. A non‐centrosymmetric three‐dimensional (4,6)‐net is formed from a linear chain of vertex‐linked [Cr2O]2− and [MN4O]2+ (M = Ni and Cu) units, which in turn are linked by the planar bidentate 4,4′‐­bipyridine ligand through the four remaining vertices of the [MN4O]2+ octahedra. There are two such three‐dimensional nets that interpenetrate with inversion symmetry.  相似文献   

10.
A series of 2‐(arylimino)benzylidene‐9‐arylimino‐5,6,7,8‐tetrahydrocyclohepta[b] pyridyliron(II) chlorides was synthesized and characterized using FT‐IR and elemental analysis, and the molecular structures of complexes Fe3 and Fe4 have been confirmed by the single‐crystal X‐ray diffraction as a pseudo‐square‐pyramidal or distorted trigonal‐bipyramidal geometry around the iron core. On activation with methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all iron precatalysts exhibited high activities toward ethylene polymerization with a marvelous thermo‐stability and long lifetime. The Fe4 /MAO system showed highest activity of 1.56 × 107 gPE·mol?1(Fe)·h?1 at 70 °C, which is one of the highest activities toward ethylene polymerization by iron precatalysts. Even up to 80 °C, Fe3 /MAO system still persist high activity as 6.87 × 106 g(PE)·mol?1(Fe)·h?1, demonstrating remarkable thermal stability for industrial polymerizations (80–100 °C). This was mainly attributing to the phenyl modification of the framework of the iron precatalysts. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 830–842  相似文献   

11.
Polymerization of 2‐pentene with [ArN?C(An)C(An)·NAr)NiBr2 (Ar?2,6‐iPr2C6H3)] ( 1‐Ni) /M‐MAO catalyst was investigated. A reactivity between trans‐2‐pentene and cis‐2‐pentene on the polymerization was quite different, and trans‐2‐pentene polymerized with 1‐Ni /M‐MAO catalyst to give a high molecular weight polymer. On the other hand, the polymerization of cis‐2‐butene with 1‐Ni /M‐MAO catalyst did not give any polymeric products. In the polymerization of mixture of trans‐ and cis‐2‐pentene with 1‐Ni /M‐MAO catalyst, the Mn of the polymer increased with an increase of the polymer yields. However, the relationship between polymer yield and the Mn of the polymer did not give a strict straight line, and the Mw/Mn also increased with increasing polymer yield. This suggests that side reactions were induced during the polymerization. The structures of the polymer obtained from the polymerization of 2‐ pentene with 1‐Ni /M‐MAO catalyst consists of ? CH2? CH2? CH(CH2CH3)? , ? CH2? CH2? CH2? CH(CH3)? , ? CH2? CH(CH2CH2CH3)? , and methylene sequence ? (CH2)n? (n ≥ 5) units, which is related to the chain walking mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2858–2863, 2008  相似文献   

12.
Three isotypic rare earth complexes, catena‐poly[[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐bis(μ‐but‐2‐enoato)‐κ3O,O′:O3O:O,O′‐[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐μ‐4,4′‐(ethane‐1,2‐diyl)dipyridine‐κ2N:N′], [Y2(C4H5O2)6(C12H12N2)(H2O)2], the gadolinium(III) analogue, [Gd2(C4H5O2)6(C12H12N2)(H2O)2], and the gadolinium(III) analogue with a 4,4′‐(ethene‐1,2‐diyl)dipyridine bridging ligand, [Gd2(C4H5O2)6(C12H10N2)(H2O)2], are one‐dimensional coordination polymers made up of centrosymmetric dinuclear [M(but‐2‐enoato)3(H2O)]2 units (M = rare earth), further bridged by centrosymmetric 4,4′‐(ethane‐1,2‐diyl)dipyridine or 4,4′‐(ethene‐1,2‐diyl)dipyridine spacers into sets of chains parallel to the [20] direction. There are intra‐chain and inter‐chain hydrogen bonds in the structures, the former providing cohesion of the linear arrays and the latter promoting the formation of broad planes parallel to (010).  相似文献   

13.
The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5′‐dmbpy)2]ClO4·H2O (where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate–5,5′‐dmbpy–KClO4 system. Within the complex cation, the NiII atom is hexacoordinated by two chelating 5,5′‐dmbpy ligands and one chelating ac ligand. The mean Ni—N and Ni—O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen‐bonded centrosymmetric dimers, which are further connected by π–π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single‐ion anisotropy, D, which arises from the reduced local symmetry of the cis‐NiO2N4 chromophore. The fitting of the variable‐temperature magnetic data (2–300 K) gives giso = 2.134 and D/hc = 3.13 cm−1.  相似文献   

14.
The coordination polymers, {[Co(bbim)2(H2O)2](tcbdc) · 2H2O}n ( 1 ), {[Ni(tcbdc)(bbim)(H2O)2] · 2DMF}n ( 2 ), and {[Cu2(tcbdc)2(bbim)4] · 4H2O}n ( 3 ) [bbim = 1,1′‐(1,4‐butanediyl)bis(imidazole) and tcbdc2– = tetrachlorobenzene‐1,4‐dicarboxylate] were synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, luminescence, and single‐crystal X‐ray diffraction analysis. Complex 1 has a double‐stranded chain structure through doubly bridged [Co(bbim)2] units. Complex 2 exhibits two‐dimensional square grid, whereas complex 3 has a three‐dimensional porous network structure with an unprecedented 44 · 611 topological structure through interpenetrating square grid. The water molecules in complex 3 occupy the vacancy through three kinds of hydrogen bond interactions. Upon excitation at 370 nm, complexes 1 – 3 present solid‐state luminescence at room temperature.  相似文献   

15.
The anionic gold(I) complexes [1‐(Ph3PAu)‐closo‐1‐CB11H11]? ( 1 ), [1‐(Ph3PAu)‐closo‐1‐CB9H9]? ( 2 ), and [2‐(Ph3PAu)‐closo‐2‐CB9H9]? ( 3 ) with gold–carbon 2c–2e σ bonds have been prepared from [AuCl(PPh3)] and the respective carba‐closo‐borate dianion. The anions have been isolated as their Cs+ salts and the corresponding [Et4N]+ salts were obtained by salt metathesis reactions. The salt Cs‐ 3 isomerizes in the solid state and in solution at elevated temperatures to Cs‐ 2 with ΔHiso=(?75±5) kJ mol?1 (solid state) and ΔH=(118±10) kJ mol?1 (solution). The compounds were characterized by vibrational and multi‐NMR spectroscopies, mass spectrometry, elemental analysis, and differential scanning calorimetry. The crystal structures of [Et4N]‐ 1 , [Et4N]‐ 2 , and [Et4N]‐ 3 were determined. The bonding parameters, NMR chemical shifts, and the isomerization enthalpy of Cs‐ 3 to Cs‐ 2 are compared to theoretical data.  相似文献   

16.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

17.
薛思佳  卞王东  柴安  吁松瑞 《中国化学》2008,26(8):1501-1505
本文首次合成标题化合物N-(4-甲基苯甲酰氨基)-N’-[5-(2-三氟甲基苯基)-2-呋喃甲酰硫脲。化合物(C21H16F3N3O3S, Mr = 447.43)单晶经测定为单斜晶体,空间群为P -1。在晶体中,存在一些分子内和分子间的相互作用,分子间还有C—H···π 的相互作用,这可能导致晶体更稳定的原因。目标产物的结构经IR, H NMR和元素分析测定确证。初步生物活性测试表明,部分化合物对棉花枯萎病、黄瓜灰霉病、苹果轮纹病和棉花炭疽病有较好的选择性杀菌活性;部分目标化合物有较好的除草活性。  相似文献   

18.
Two C–C bridged Ni(II) complexes bearing β‐keto‐9‐fluorenyliminato ligands with electron‐withdrawing groups (─CF3), Ni{PhC(O)CHC[N(9‐fluorenyl)]CF2}2 (Ni 1 ) and Ni{CF3C(O)CHC[N(9‐fluorenyl)]Ph}2 (Ni 2 ), were synthesized by metal coordination reaction and different in situ bonding mechanisms. The C–C bridged bonds of Ni 1 were formed by in situ intramolecular trifluoromethyl and 9‐fluorenyl carbon–carbon cross‐coupling reaction and those of Ni 2 were formed by in situ intramolecular 9‐fluorenyl carbon–carbon radical coupling reaction mechanism. The obtained complexes were characterized using 1H NMR spectroscopy and elemental analyses. The crystal and molecular structures of Ni 1 and Ni 2 with C–C bridged configuration were determined using X‐ray diffraction. Ni 1 and Ni 2 were used as catalysts for norbornene (NB) polymerization after activation with B(C6F5)3 and the catalytic activities reached 106 gpolymer molNi?1 h?1. The copolymerization of NB and styrene catalyzed by the Ni 1 /B(C6F5)3 system showed high activity (105 gpolymer molNi?1 h?1) and the catalytic activities decreased with increasing feed content of styrene. All vinyl‐type copolymers exhibited high molecular weight (104 g mol?1), narrow molecular weight distribution (Mw/Mn = 1.71–2.80), high styrene insertion ratios (11.13–50.81%) and high thermal stability (Td > 380°C) and could be made into thin films with high transparency in the visible region (400–800 nm).  相似文献   

19.
Cycloocta[b ]pyridin‐10‐one was prepared to form the corresponding imino derivatives, which then reacted with (DME)NiBr2 to form 10‐aryliminocycloocta[b ]pyridylnickel bromides ( Ni1 – Ni5 ). The new compounds were characterized by means of FT‐IR spectroscopy as well as elemental analysis and the organic ligands were also analyzed by the NMR measurements. Furthermore, the molecular structure of a representative complex Ni3 was determined by the single crystal X‐ray diffraction, indicating the distorted tetrahedral geometry around the nickel atom. Upon the activation with either methylaluminoxane (MAO) or diethylaluminium chloride (Et2AlCl), the title nickel complexes exhibited high activity in ethylene polymerization and produced polyethylene of low molecular weight (1.43–6.78 kg mol?1) and low dispersity (1.7–2.4), which suggests a single‐site catalytic system. More importantly, the microstructure of the resultant polyethylene (especially degree of branching) and certain physical properties, such as T m values, can easily be modulated by selecting the proper substituents within the ligands and adjusting the polymerization conditions. This finding demonstrates that it is plausible to use a single catalyst for synthesizing different types of polyethylene on demand.10‐Aryliminocycloocta[b ]pyridylnickel bromides ( Ni1–Ni5 ), upon activation with either MAO or Et2AlCl, exhibited high activity towards ethylene polymerization and produced polyethylenes with low molecular weight (1.43–6.78 kg mol?1) and low dispersity (1.7–2.4). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2601–2610  相似文献   

20.
The self‐assembly of NiCl2·6H2O with a diaminodiamide ligand 4,8‐diazaundecanediamide (L‐2,3,2) gave a [Ni(C9H20N4O2)(Cl)(H2O)] Cl·2H2O ( 1 ). The structure of 1 was characterized by single‐crystal X‐ray diffraction analysis. Structural data for 1 indicate that the Ni(II) is coordinated to two tertiary N atoms, two O atoms, one water and one chloride in a distorted octahedral geometry. Crystal data for 1: orthorhombic, space group P 21nb, a = 9.5796(3) Å, b = 12.3463(4) Å, c = 14.6305(5) Å, Z = 4. Through NH···Cl–Ni (H···Cl 2.42 Å, N···Cl 3.24 Å, NH···Cl 158°) and OH···Cl–Ni contacts (H···Cl 2.36 Å, O···Cl 3.08 Å, OH···Cl 143°), each cationic moiety [Ni(C9H20N4O2) (Cl)(H2O)]+ in 1 is linked to neighboring ones, producing a charged hydrogen‐bonded 1D chainlike structure. Thermogrametric analysis of compound 1 is consistent with the crystallographic observations. The electronic absorption spectrum of Ni(L‐2,3,2)2+ in aqueous solution shows four absorption bands, which are assigned to the 3A2g3T2g, 3T2g1Eg, 3T2g3T1g, and 3A2g3T1g transitions of triplet‐ground state, distorted octahedral nickel(II) complex. The cyclic volammetric measurement shows that Ni2+ is more easily reduced than Ni(L‐2,3,2)2+ in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号