首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Two bioactive cyclic dipeptides, cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr), were isolated from the culture broth of Streptomyces sp. strain 22-4 and tested against three economically important plant pathogens, Xanthomonas axonopodis pv. citri, Ralstonia solanacearum and Clavibacter michiganensis. Both cyclic dipeptides were active against X. axonopodis pv. citri and R. Solanacearum with MIC of 31.25 μg/mL. No activity could be observed against C. michiganensis.  相似文献   

2.
In this study, using botanical active component thiochromanone as the lead compound, a series of novel thiochromanone derivatives containing an oxime or oxime ether moiety were designed and synthesized. The half-maximal effective concentration (EC50) values of compound 4a against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas oryzae pv. oryzicolaby (Xoc), and Xanthomonas axonopodis pv. citri (Xac) were 6, 10, and 15 μg/ml, respectively, which were superior to those of Bismerthiazol and Thiodiazole-copper. Meanwhile, compound 4a also revealed better antifungal activity against Botrytis cinerea, with the EC50 value of 18 μg/ml, than that of Carbendazim. To the best of our knowledge, this is the first report on the antibacterial and antifungal activities of this series of novel thiochromanone derivatives containing an oxime or oxime ether moiety.  相似文献   

3.
Pongamia pinnata – a plant used since olden times in Ayurvedic treatment – is reported to have diverse functions including antibacterial, antidiabetic, antineurodegenerative, antiepileptic, antiulcer, etc. In this study, our objective was to prepare silver nanoparticles (AgNPs) by green synthesis mediated by methanolic seed extract of P. pinnata and to determine their antimicrobial and antioxidant potential and wound healing activity. AgNPs were characterized for particle size and shape and for antioxidant potential. Further, the AgNPs were incorporated in a gel. The wound healing activity was investigated using an excision wound healing model in Wistar rats. The AgNP‐loaded gel was applied topically to the wounded rats daily for 30 days. The wound contraction was calculated and histopathological studies of the healed tissues were conducted. Karanjin content of the extract was found to be 349 ± 2.16 mg g?1. Formation of AgNPs was confirmed using transmission and scanning electron microscopies and X‐ray diffraction. AgNPs showed good antioxidant potential and were active against Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa. Significant wound healing activity (p < 0.05) was shown by the AgNP gel as compared to 5% Betadine ointment. Thus, the prepared AgNPs have antimicrobial and wound healing effects that may be useful in treatment of topical infections especially in wounds.  相似文献   

4.
A hyperthermophilic α-amylase encoding gene from Pyrococcus woesei was transferred and expressed in Xanthomonas campestris ATCC 13951. The heterologous α-amylase activity was detected in the intracellular fraction of X. campestris and presented similar thermostability and catalytic properties with the native P. woesei enzyme. The recombinant α-amylase was found to be stable at 90 °C for 4 h and within the same period it retained more than 50% of its initial activity at 110 °C. Furthermore, X. campestris transformants produced similar levels of recombinant α-amylase activity regardless of the carbon source present in the growth medium, whereas the native X. campestris α-amylase production was highly dependent on starch availability and it was suppressed in the presence of glucose or other reducing sugars. On the other hand, xanthan gum yield, which appeared to be similar for both wild type and recombinant X. campestris strains, was enhanced at higher starch or glucose concentrations. Evidence presented in this study supports that X. campestris is a promising cell factory for the co-production of recombinant hyperthermophilic α-amylase and xanthan gum.  相似文献   

5.

The present study reports the synthesis of silver nanoparticles (AgNPs) using haloalkaliphilic Streptomyces spp. characterization, and antifungal activity thereof. The UV visible spectra of synthesized AgNPs showed a characteristic absorption peak at 430 nm, due to the excitation of Surface Plasmon Resonance. Scanning electron microscopy and transmission electron microscopy images showed spherical shape NPs with an average particle size of 16.4?±?2.2 nm. The crystalline structure of the AgNPs was confirmed by X-ray diffraction (XRD). Zeta potential analyses revealed that NPs were negatively charged (??8.12?±?3.87 mV). The synthesized AgNPs are significantly active against phytopathogenic fungi, Fusarium verticillioides and Ustilago maydis. Microscopic, histo- and bio-chemical investigation of AgNPs against F. verticillioides revealed that AgNPs at 100 μg concentration inhibits the hyphal growth and conidia germination, and?~?42.85% reduction of ergosterol biosynthesis. The results of propidium iodide staining and high relative cell membrane conductivity confirmed AgNPs mediated damage to the membrane. Moreover, the AgNPs synthesized by Streptomyces spp. inhibit the growth of F. verticillioides could be due to the inhibition of ergosterol biosynthesis and membrane damage. In our knowledge, this is the first report demonstrating the anti F. verticillioides activity of AgNPs synthesized by Streptomyces spp.

  相似文献   

6.
The emergence of multi‐drug resistant (MDR) bacteria and dynamic pattern of infectious diseases demand to develop alternative and more effective therapeutic strategies. Silver nanoparticles (AgNPs) are among the most widely commercialized engineered nanomaterials, because of their unique properties and increasing use for various applications in nanomedicine. This study for the first time aimed to evaluate the antibacterial and antibiofilm activities of newly synthesized nanochelating based AgNPs against several Gram‐positive and ‐negative nosocomial pathogens. Nanochelating technology was used to design and synthesize the AgNPs. The cytotoxicity was tested in human cell line using the MTT assay. AgNPs minimal inhibitory concentration (MIC) was determined by standard broth microdilution. Antibiofilm activity was assayed by a microtiter‐plate screening method. The two synthesized AgNPs including AgNPs (A) with the size of about 20‐25 nm, and AgNPs (B) with 30‐35 nm were tested against Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii, and Pseudomonas aeruginosa. AgNPs exhibited higher antibacterial activity against Gram‐positive strains. AgNPs were found to significantly inhibit the biofilm formation of tested strains in concentration 0.01 to 10 mg/mL. AgNPs (A) showed significant effective antibiofilm activity compared to AgNPs (B). In summary, our results showed the promising antibacterial and antibiofilm activity of our new nanochelating based synthesized AgNPs against several nosocomial pathogens.  相似文献   

7.
Green fabrication has become a safe approach for producing nanoparticles. Plant-based biogenic synthesis of silver nanoparticles (AgNPs) has emerged as a possible alternative to traditional chemical production. In this paper, we provide a low-cost, green synthesis of AgNPs utilizing using Kei-apple (Dovyalis caffra) fruit extract. Ultraviolet–visible (UV–Vis) spectroscopy, Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Scanning-Electron Microscope (SEM), and Dynamic Light Scattering (DLS) analyses were used to characterize green produced AgNPs. The formation of AgNPs was shown to have a surface resonance peak of 415 nm in UV–visible spectra, and FTIR spectra verified the participation of biological molecules in Synthesis of AgNPs. The TEM revealed that the biosynthesized AgNPs were mostly spherical in form, with size range of 12–53 nm. XRD diffractogram was used to demonstrate the face cubic centre (fcc) character of AgNPs. Excellent anticancer activity of AgNPs was recorded where more than 80% of Prostate Cancer (PC-3) cell lines was inhibited by 100–150 µg/mL of AgNPs, while 38% only was recorded using AgNO3 and 55.62% was recorded D. caffra fruit extract at 150 µg/mL. Destructions of PC-3 cell was observed as a result of exposed to AgNPs, followed by D. caffra fruit extract, while minor alterations were recorded as exposed to AgNO3. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging using AgNPs was three fold using fruit extract at 100 µg/mL indicating good antioxidant activity. Excellent inhibitory activity of AgNPs was recorded against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus fumigatus with inhibition diameter zone 28.22 ± 0.25 mm, 23.21 ± 0.35 mm, 27.25 ± 0.03 mm, 28.40 ± 0.15 mm, 29.23 ± 0.44 mm, and 9.52 ± 0.5 mm, respectively compared with AgNO3. D. caffra fruits considered a promising and safe source for fabrication of AgNPs with multi-biological functions.  相似文献   

8.
A series of 2‐substituted phenoxy‐N‐(4‐substituted phenyl‐5‐(1H‐1,2,4‐triazol‐1‐yl)thiazole‐2‐yl)acetamide derivatives 8a , 8b , 8c , 8d , 8e , 8f , 8g , 8h , 8i , 8j , 8k , 8l , 8m , 8n , 8o , 8p , 8q , 8r , 8s , 8t was synthesized by the reaction of phenoxyacetyl chloride 7 with intermediate 4‐substituted phenyl‐5‐(1H‐1,2,4‐triazol‐1‐yl)thiazol‐2‐amine 5 . Their structures were confirmed by 1H NMR, 13C NMR, MS, IR, and elemental analyses. The synthesized compounds were also screened for their antimicrobial activity against three types of plant fungi (Gibberella zeae , Phytophthora infestans , and Paralepetopsis sasakii ) and two kinds of bacteria [Xanthomonas oryzae pv. oryzae (Xoo ) and Xanthomonas axonopodis pv. citri (Xac )] showing promising results. In particular, 8b , 8f , 8g , and 8h exhibited excellent antibacterial activity against Xoo , with 50% effective concentration (EC50) values of 35.2, 80.1, 62.5, and 82.1 µg/mL, respectively, which are superior to the commercial antibacterial agent bismerthiazol (89.9 µg/mL). The preliminary structure–activity relationship studies of these compounds are also briefly described.  相似文献   

9.
Plant microbial diseases caused global production constraints have become one of the most challenging events, thus urgently needing to be addressed nowadays. To efficiently promote the discovery of promising antimicrobial surrogates, a type of 1,3,4-oxadiazole thioethers owning naturally bioactive thiazolium patterns was designed and fabricated. Antibacterial screening results revealed that title compounds could significantly inhibit the growth of pathogens Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Xanthomonas axonopodis pv. citri. And the related antibacterial efficacy was elevated by approximately 386-, 16-, and 24-folds comparing those of mainly used commercial agents bismerthiazol and thiodiazole copper. In vivo experiment suggested that A9 could manage rice bacterial blight with the corresponding curative and protection efficiencies of 48.01% and 50.55% at 200 μg/mL. Moreover, SEM patterns and fluorescence spectra were performed to explore the possible antibacterial mechanism. Preliminary antifungal bioassays revealed that these molecules paraded broad-spectrum inhibition effects against three tested fungal strains. Considering the simple molecular skeleton and significant biological actions, title compounds can be further explored as potential antimicrobial surrogates for managing plant bacterial and fungal diseases.  相似文献   

10.
Manganese(II) complexes having the general composition Mn(L)2X2 (where L = 3‐bromoacetophenone semicarbazone, 3‐bromoacetophenone thiosemicarbazone, 1‐tetralone semicarbazone, 1‐tetralone thiosemicarbazone, flavanone semicarbazone or flavanone thiosemicarbazone and X = Cl? or ½SO42?) were synthesized. All the complexes were characterized using elemental analyses, molar conductance and magnetic moment measurements, and mass, 1H NMR, infrared, electron paramagnetic resonance and electronic spectral studies. The molar conductance of the complexes in dimethylsulfoxide lies in the range 10–20 Ω?1 cm2 mol?1 indicating their non‐electrolytic nature. All the complexes show magnetic moments corresponding to five unpaired electrons. The possible geometries of the complexes were assigned on the basis of electron paramagnetic resonance, electronic and infrared spectral studies. Some of the synthesized ligands and their complexes were screened for their antifungal activities against fungi Macrophomina phaseolina, Botrytis cinerea and Phoma glomerata using the food poison technique and their antibacterial activities against Xanthomonas campestris pv. campestris and Ralstonia solanacearum using the paper disc diffusion method. They showed appreciable activities.  相似文献   

11.
A series of novel N‐substituted‐2‐(6‐morpholino‐9H‐purin‐9‐yl)acetamide and 4‐(9‐((5‐substituted‐1,3,4‐oxadiazole/thiadiazole‐2‐yl)methyl)‐9H‐purin‐6‐yl)‐morpholine derivatives were synthesized and evaluated their antibacterial activities against rice bacterial leaf blight and tobacco bacterial wilt caused by Xanthomonas oryzae pv. oryzae (Xoo) and Ralstonia solanacearum (R. solanacearum) via the turbidimeter test in vitro. Antibacterial bioassay indicated that most compounds demonstrated good inhibitory effect against Xoo and R. solanacearum. Especially, compound 6a demonstrated the best inhibitory effect against Xoo with half‐maximal effective concentration (EC50) value of 8.39 μg/mL, which was even better than those of commercial agents Bismerthiazol and Thiodiazole copper. The synthesized purine derivatives containing amide and 1,3,4‐oxadiazole/thiadiazole moieties exhibited excellent antibacterial activities against Xanthomonas oryzae pv. oryzae and R. solanacearum in vitro.  相似文献   

12.
In this paper, a variety of novel 1,3,4-oxadiazole derivatives possessing diamides were synthesized and tested for their antibacterial and antiviral activity. Preliminary antibacterial assays indicated that some intermediates and title compounds displayed excellent inhibition effects against plant pathogens Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac). Further studies revealed that compound H15 exhibited the strongest activities against Xoo and Xac with minimal EC50 values of 0.7 and 5.9 μg/mL, respectively. Antiviral bioassays suggested that some of these structures displayed appreciable curative activities and moderate protective effects against tobacco mosaic virus (TMV) in vivo. Among them, compound H8 exerted the best chemotherapeutic effect against TMV with the curative rate of 60.0% at 500 µg/mL, which was comparable with those of commercial agricultural antiviral agent ningnanmycin (54.2%). Given their significant biological activities, this kind of compound could serve as new leading compounds in the study of antibacterial and antiviral chemotherapy.  相似文献   

13.
Silver nanoparticles (AgNPs) have attracted considerable attention owing to their unique biological applications. AgNPs synthesized by plant extract is considered as a convenient, efficient and eco-friendly material. In this work, the aqueous extract of Areca catechu L. nut (ACN) was used as the reducing and capping agents for one-pot synthesis of AgNPs, and their antioxidant and antibacterial activities were investigated. UV (Ultra Violet)-visible spectrum and dynamic light scattering (DLS) analysis revealed that the size of AgNPs was sensitive to the synthesis conditions. The synthesized AgNPs were composed of well-dispersed particles with an small size of about 10 nm under the optimal conditions (pH value of extract was 12.0; AgNO3 concentration was 1.0 mM; reaction time was 90 min). In addition, scanning electron microscope with energy dispersive X-ray (SEM-EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD) results further verified that the synthesized AgNPs had a stable and well-dispersed form (Zeta potential value of ?30.50 mV and polydispersity index of 0.328) and a regular spherical shape (average size of 15–20 nm). In addition, Fourier transform infrared spectrometry (FTIR) results revealed that phytochemical constituents in ACN aqueous extract accounted for Ag+ ion reduction, capping and stabilization of AgNPs. The possible reductants in the aqueous extract of Areca catechu L. nut were identified by high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (HPLC-ESI-qTOF/MS) method. More importantly, the synthesized AgNPs indicated excellent free radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH, IC50 = 11.75 ± 0.29 μg/mL) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+, IC50 = 44.85 ± 0.37 μg/mL), which were significant higher than that of ascorbic acid. Moreover, AgNPs exhibited an enhanced antibacterial activity against six selected common pathogens (especially Escherichia coli and Staphylococcus aureus) compared with AgNO3 solution. In a short, this study showed that the Areca catechu L. nut aqueous extract could be applied for eco-friendly synthesis of AgNPs.  相似文献   

14.
A series of novel thiochromanone derivatives containing a sulfonyl hydrazone moiety were designed and synthesized. Their structures were determined by 1H-NMR, 13C-NMR, and HRMS. Bioassay results showed that most of the target compounds revealed moderate to good antibacterial activities against Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicolaby, and Xanthomonas axonopodis pv. citri. Compound 4i had the best inhibitory activity against Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicolaby, and Xanthomonas axonopodis pv. citri, with the EC50 values of 8.67, 12.65, and 10.62 μg/mL, which were superior to those of Bismerthiazol and Thiodiazole-copper. Meanwhile, bioassay results showed that all of the target compounds proved to have lower antifungal activities against Sclerotinia sclerotiorum, Fusarium oxysporum, Gibberella zeae, Rhizoctonia solani, Verticillium dahlia, and Botrytis cinerea than those of Carbendazim.  相似文献   

15.
Here, a green method is described for the biosynthesis of Ag nanoparticles (Ag NPs) using aqueous extracts of the leaf of Salvia leriifolia as reducing and stabilizing agent. Various techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) and X‐ray diffraction (XRD) were employed for the characterization of the structure and morphology of bio‐synthesized AgNPs. The results reveal that AgNPs synthesized with uniform spherical morphology and average diameters of 27 nm. The AgNPs as a green and efficient heterogeneous catalyst presented superior antibacterial activity. Direct electrochemistry studies of the synthesized AgNPs confirmed that nanoparticles retained their direct electrochemical activity. This is mainly attributed to the proper biosynthesis process, the large specific surface area and the good conductivity of the synthesized nanoparticles. Hence, the present synthesized AgNPs displayed good electrocatalytic activity to the reduction of nitrite ions. The proposed method is highly recommended as a novel platform for the development of electrochemical sensors which can further expand the applications of AgNPs. Antibacterial activity of the synthesized AgNPs was evaluated against nine microorganisms. AgNPs prevented the growth of all selected bacteria. The nanoparticles inhibited the growth of Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus coagulase, Acinetobacter baumannii, and Streptococcus pneumonia more than antibiotic of vancomycin, however, the ability of AgNPs against Echerishia coli and Serratia marcescens was less than the antibiotic. On the other hand AgNPs were active against Citrobacter frurdii, while the antibiotic was inactive.  相似文献   

16.
Through tuning and optimizing the phenyl substituents and alkyl length, a series of pyridinium-functionalized amphiphiles possessing potent antibacterial activity toward three types of plant pathogenic bacteria were obtained. Investigations on the inhibition effect of substituents on the phenyl ring towards the bioactivity suggested that the substitutional group was not the crucial factor for the bioactivity. In comparison, the antibacterial effects could be significantly enhanced with increasing the length of alkyl chains. Among these amphiphiles, 6c, 6f, 6h, 6i, 6k, 6l, 6n, and 6q exhibited remarkable inhibition activities against the three pathogenic bacteria with the half-maximal effective concentration (EC50) values within 0.128–1.98 µg/mL. Furthermore, the minimum EC50 values against the pathogens Xanthomonas oryzae pv. oryzae and Xanthomonas axonopodis pv. citri could reach to 0.128 and 0.403 µg/mL, respectively, which were decreased about four times than those of our previous results. Given their simple synthesis and biocidal antibacterial activity, this kind of amphiphiles could be developed as promising bactericides against plant bacterial diseases.  相似文献   

17.
Essential oils from aerial parts of Acantholippia deserticola, Artemisia proceriformis, Achillea micrantha and Libanotis buchtormensis were analysed by GC–MS. The major compounds identified were β-thujone (66.5 ± 0.2%), and trans-sabinyl acetate (12.1 ± 0.2%) in A. deserticola; α-thujone (66.9 ± 0.4%) in A. proceriformis; 1,8-cineole (26.9 ± 0.5%), and camphor (17.7 ± 0.3%) in A. micrantha and cis-β-ocimene (23.3 ± 0.3%), and trans-β-ocimene (18.4 ± 0.2%) in L. buchtormensis. The oils showed a weak antimicrobial effect (MIC100 > 1.5 mg/ml) on most phytopathogens tested. A moderate antimicrobial activity (MIC100 between 0.5 and 1.5 mg/ml) was displayed by the oils of A. deserticola, A. micrantha and L. buchtormensis on Septoria tritici and by the oil of A. deserticola on Septoria glycine. The antimicrobial activity was associated to the contents of β-thujone, trans-sabinyl acetate and trans-sabinol. Our results indicate that the tested essential oils have little inhibitory potency not suitable for use as plant protection products against the phytopathogens assayed.  相似文献   

18.

In recent years, progress of biological synthesis of nanoparticles is inevitable due to its important applications. In this research, a new and simple method for the synthesis of AgNPs from plant extracts is presented. The extract from shoots of the plant Tribulus terrestris L. was mixed with AgNO3 with the aim of biologically synthesizing AgNPs. The biomolecules existing in the extract were accountable for the fast reduction of silver ions (Ag+) to AgNPs. Characterization of biosynthesized AgNPs was performed by UV–Vis, TEM, DLS, and XRD. The AgNPs exhibit a strong peak at 434 nm, and sphere-shaped AgNPs were found to be ~?25 nm. The biosynthesized silver nanoparticles have demonstrated high antibacterial effect against pathogenic bacteria (i.e., Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa). In addition, the in vitro cytotoxicity effect of biosynthesized silver nanoparticles was also investigated and was detected to be up to 15.62 μg/mL in the treated Neuro2A cells. The plant-mediated biosynthesis of AgNPs has comparatively rapid, eco-friendly, inexpensive and wide-ranging application in modern medicine and the food industry.

  相似文献   

19.
Nanobiotechnology is the intersection of nanotechnology and biology, where nano systems are applied to help study biological systems. There is a growing interest of researchers in the application of nanotechnology in improving the efficacy of photodynamic therapy. In this study, the antioxidant, photodynamic, anticancer, and antibacterial potential of plant extracts and silver nanoparticles (AgNPs) were investigated. In order to synthesize AgNPs, 10 g of dried powder of Tecoma stans and Narcissus tazetta was boiled in deionized water (100 ml) and mixed with aqueous solution of silver metals, resulting in the formation of AgNPs. The synthesized AgNPs were spherical having size in a range of 15–100 nm. The application of extract (50 µl) and AgNPs to rhabdomyosarcoma cell line showed a decreased cell viability (%). Photodynamic study revealed an improvement in photosensitizer efficacy on introducing AgNPs. Both plant extracts and AgNPs had significant effect against methicillin resistant Staphylococcus aureus (MRSA) as well as sensitive Staphylococcus aureus with minimum inhibitory concentration (MIC) values of AgNPs lower (32–256 µg/ml) than the plant extracts. According to the current findings, these AgNPs have an enhancing effect on the photodynamic cytotoxic potential of plant extracts. Because of biological efficacy, these AgNPs may play a crucial role in determining therapeutic potential of Tecoma stans and Narcissus tazetta.  相似文献   

20.
Starting from carbonic acid diethyl ester, a series of 1,2,4‐triazole derivatives containing 1,2,3‐thiadiazole were synthesized. Reactions were performed by microwave irradiation or ultrasonic irradiation as well as by conventional heating. The structure of title compounds was characterized by 1H‐NMR, MS, and elemental analyses. The fungicidal activities of these compounds were tested in vivo. Most of title compounds exhibited good antifungal activity against Pseudoperonospora cubensis. Some of title compounds displayed moderate antifungal activities against Fusarium oxysporum, Pseudoperonospora cubensis, Sphaerotheca fuligenea, Corynespora cassiicola, and Xanthomonas axonopodis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号