首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
Extraction and determination of estrogens in water samples were performed using alcoholic-assisted dispersive liquid–liquid microextraction (AA-DLLME) and high-performance liquid chromatography (UV/Vis detection). A Plackett–Burman design and a central composite design were applied to evaluate the AA-DLLME procedure. The effect of six parameters on extraction efficiency was investigated. The factors studied were volume of extraction and dispersive solvents, extraction time, pH, amount of salt and agitation rate. According to Plackett–Burman design results, the effective parameters were volume of extraction solvent and pH. Next, a central composite design was applied to obtain optimal condition. The optimized conditions were obtained at 220 μL 1-octanol as extraction solvent, 700 μL ethanol as dispersive solvent, pH 6 and 200 μL sample volume. Linearity was observed in the range of 1–500 μg L?1 for E2 and 0.1–100 μg L?1 for E1. Limits of detection were 0.1 μg L?1 for E2 and 0.01 μg L?1 for E1. The enrichment factors and extraction recoveries were 42.2, 46.4 and 80.4, 86.7, respectively. The relative standard deviations for determination of estrogens in water were in the range of 3.9–7.2 % (n = 3). The developed method was successfully applied for the determination of estrogens in environmental water samples.  相似文献   

2.
A simple, rapid and efficient method termed dispersive liquid–liquid microextraction combined with liquid chromatography-fluorescence detection, has been developed for the extraction and determination of polycyclic aromatic hydrocarbons (PAHs) in water and fruit juice samples. Parameters such as the kind and volume of extraction solvent and dispersive solvent, extraction time and salt effect were optimized. Under optimum conditions, the enrichment factors ranged from 296 to 462. The linear range was 0.01–100 μg L?1 and limits of detection were 0.001–0.01 μg L?1. The relative standard deviations (RSDs, for 5 μg L?1 of PAHs) varied from 1.0 to 11.5% (n = 3). The relative recoveries of PAHs from tap, river, well and sea water samples at spiking level of 5 μg L?1 were 82.6–117.1, 74.9–113.9, 77.0–122.4 and 86.1–119.3%, respectively. The relative recoveries of PAHs from grape and apple juice samples at spiking levels of 2.5 and 5 μg L?1 were 80.8–114.7 and 88.9–123.0%, respectively. It is concluded that the proposed method can be successfully applied for determination of PAHs in water and fruit juice samples.  相似文献   

3.
A sensitive, economic, rapid and simple method for the determination of four N-methylcarbamate pesticides: methomyl (2.0–80 μg L?1), aldicarb (5.0–50 μg L?1), butocarboxim (2.0–60 μg L?1) and oxamyl (2.0–60 μg L?1); is reported. It relies on the coupling of photoinduced chemiluminescence (PICL) detection with flow injection (FI) methodology. The automation of FI together with the use of light as a reagent decreased the environmental impact of the analysis. The proposed method was based on the oxidation of these pesticides, previously irradiated on-line with UV light, with cerium(IV), using quinine as a sensitiser. Limits of detection below the legal limits (100 ng L?1) established by the European Union for drinking waters were obtained without the need of preconcentration steps. A good inter-day reproducibility (1.6–6.4%, n = 5), repeatability (rsd = 2.7 %, n = 25) and high throughput (123 h?1) were achieved. The method was successfully applied to the determination of methomyl in natural waters with mean recoveries ranging from 90% to 98%.  相似文献   

4.
Simultaneous derivatization and dispersive liquid–liquid microextraction technique for gas chromatographic determination of fatty acids in water samples is presented. One hundred microlitre of ethanol:pyridine (4:1) were added to 4 mL aqueous sample. Then a solution containing 0.960 mL of acetone (disperser solvent), 10 μL of carbon tetrachloride (extraction solvent) and 30 μL of ethyl chloroformate (derivatization reagent) were rapidly injected into the aqueous sample. After centrifugation, 1 μL sedimented phase with the analytes was analyzed by gas chromatography. The effects of extraction solvent type, derivatization, extraction, and disperser solvents volume, extraction time were investigated. The calibration graphs were linear up to 10 mg L?1 for azelaic acid (R 2 = 0.998) and up to 1 mg L?1 for palmitic and stearic acids (R 2 = 0.997). The detection limits were 14.5, 0.67 and 1.06 μg L?1 for azelaic, palmitic, and stearic acids, respectively. Repeatabilities of the results were acceptable with relative standard deviations (RSD) up to 13%. A possibility to apply the proposed method for fatty acids determination in tap, lake, sea, and river water was demonstrated.  相似文献   

5.
In the present study, application of Fe3O4 magnetic nanoparticles (MNPs) coated with diethyldithiocarbamate as a solid-phase sorbent for extraction of trace amounts of cadmium (Cd2+) and nickel (Ni2+) ions by the aid of ultrasound was investigated. The analytes were determined by inductively coupled plasma-optical emission spectroscopy. Fe3O4 MNPs were prepared by solvothermal method and characterized with dynamic light scattering, scanning electron microscope and X-ray diffraction. Response surface methodology was used for optimization of the extraction process and modeling the data. The optimal conditions obtained were as follows: chelating agent, 1.2 g L?1; pH, 6.13; sonication time, 13 min and Fe3O4 MNPs, 10.3 mg. The calibration curves were linear over the concentration range of 1–1,000 μg L?1 for Cd2+ and 2.5–1,000 for Ni2+ with the determination coefficients (R 2) of 0.9997 and 0.9995, respectively. The limits of detection were 0.27 μg L?1 for Cd2+ and 0.76 μg L?1 for Ni2+. The relative standard deviations (n = 7, C = 200 μg L?1) for determination of Cd2+ and Ni2+ were 2.0 and 2.7 %, respectively. The relative recoveries of the analytes from tap, river and lagoon waters and rice samples at the spiking level of 10 μg L?1 were obtained in the range of 95–105 %.  相似文献   

6.
Formaldehyde is known as a highly toxic compound to humans and identified as a carcinogenic substance. In this study, Hantzsch reaction was utilized for the derivatization of trace amounts of formaldehyde in aqueous samples with acetylacetone in the presence of ammonia to form an extractable colored product named 3,5-diacetyl 1,4-dihydrolutidine (DDL) and its further extraction using two-phase hollow fiber liquid-phase microextraction. The main experimental variables affecting the extraction performance were investigated and optimized. Under the optimum conditions (sample volume 12 mL; reaction temperature 70 °C; ammonium acetate buffer solution 4 mL 0.1 mol L?1; acetylacetone 5 mL 0.15 mol L?1; solvent octanol, salt concentration 20% (w/v) NaCl; pH of donor phase 7.0; stirring speed 400 rpm and extraction time 30 min), the linear dynamic range, limit of detection (LOD as 3S b/m) and relative standard deviation (RSD %) of the proposed method were obtained as 5–250 μg L?1 (r 2 = 0.9979), 3.6 μg L?1 and 2.5%, respectively. Finally, the applicability of the proposed method was examined, and very good results were obtained. The results confirmed the applicability of the proposed method as a versatile, low-cost and sensitive preconcentration method for determination of low concentrations of formaldehyde in aqueous solutions.  相似文献   

7.
A fast and effective preconcentration method for extraction of organochlorine pesticides (OCPs) was developed using a homogeneous liquid–liquid extraction based on phase separation phenomenon in a ternary solvent (water/methanol/chloroform) system. The phase separation phenomenon occurred by salt addition. After centrifugation, the extraction solvent was sedimented in the bottom of the conical test tube. The OCPs were transferred into the sedimented phase during the phase separation step. The extracted OCPs were determined using gas chromatography–electron capture detector. Several factors influencing the extraction efficiency were investigated and optimized. Optimal results were obtained at the following conditions: volume of the consolute solvent (methanol), 1.0 mL; volume of the extraction solvent (chloroform), 55 μL; volume of the sample, 5 mL; and concentration of NaCl, 5 % (w/v). Under optimal conditions, the preconcentration factors in the range of 486–1,090, the dynamic linear range of 0.01–100 μg L?1, and the limits of detection of 0.001–0.03 μg L?1 were obtained for the OCPs. Using internal standard, the relative standard deviations for 1 μg L?1 of the OCPs in the water samples were obtained in the range of 4.9–8.6 % (n = 5). Finally, the proposed method was successfully applied for extraction and determination of the OCPs in water and fruit samples.  相似文献   

8.
A green and sensitive dispersive liquid-phase microextraction procedure based on room-temperature ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) for preconcentration and determination of total iron in real samples prior to flame atomic absorption spectrometry was developed. 2-Mercaptopyridine-N-oxide (pyrithione) and ethanol were used as complexing agent and dispersive solvent in the proposed method, respectively. The factors influencing the extraction were optimized. Under optimum conditions, the enhancement factor of 15 was obtained from only 11.35 mL of aqueous phase. The linear dynamic range and the detection limit were 10.0–700 and 2.4 μg L?1, respectively. The relative standard deviation (RSD) for ten replicate measurements of 500 μg L?1 of iron is 3.1 %. The developed method has been successfully applied for the determination of iron in water samples, human blood serum and rock certified reference material with high efficiency.  相似文献   

9.
In this study, a simple and efficient method has been developed to analyze pesticides in water samples using ultrasonic-assisted dispersive liquid–liquid microextraction (UA-DLLME) combined with gas chromatography-flame ionization detection (GC-FID). Several parameters, including type and volume of extractant and dispersant, extraction time, and amount of salt on extraction performance, were optimized in detail. A mixture of acetonitrile (1.0 mL, dispersant) and carbon tetrachloride (15 μL, extractant) was used for extraction. Under optimal conditions, enrichment factors were obtained between 315 and 1153. The linearity of the method ranged from 1 to 100 μg L?1 with correlation coefficients ≥0.9990. Limits of detection (S/N = 3) ranged between 0.09 and 0.57 μg L?1, depending on the compounds. Relative standard deviations were <8.0 % (n = 5) for both intra- and inter-day analyses. The proposed method was successfully applied for the preconcentration and determination of pesticides in water samples (river water, tap water, and lake water) with recoveries that varied from 90.5 to 107.7 %.  相似文献   

10.
A modified hollow-fiber-supported dispersive liquid-liquid microextraction (HF-DLLME) method was developed for the determination of aflatoxins and ochratoxin A in food samples. The various parameters affecting the efficiency of extraction, such as pH, salt addition, extraction time, stirring rate, desorption time, type and volume of extractant and disperser solvents were carefully studied and optimized using two step strategies. The linearity of the evaluated results was 0.1 to 30?μg L?1 for aflatoxins and 0.1 to 20?μg L?1 for ochratoxin A, with regression coefficients (R2) exceeding 0.9990. The precision was satisfactory with relative standard deviation values less than 11%. The method accuracy was within the recommended range from 70% to 120% and analyte accuracy between 83% and 101%. The limits of detection and quantification were in the range from 0.04 to 0.06?μg L?1 and 0.08 to 0.13?μg L?1, respectively, for multi-aflatoxins, and 0.02 to 0.04?µg L?1 and 0.08 to 0.10?µg L?1, respectively, for ochratoxin A. The developed method was successfully applied for the determination of mycotoxins in food samples.  相似文献   

11.
A novel, fast and efficient method for the analysis of nitroaniline isomers as model compounds was developed using vortex-assisted supramolecular solvent liquid–liquid microextraction (VA-SMS-LLME). A vortex mixer was used as the mixer in supramolecular solvent liquid–liquid microextraction, and it decreased the extraction time greatly. Several important parameters influencing extraction efficiency, such as the type and volume of extraction solvent, pH of sample, salt effect and extraction time, were optimised in detail. Under the optimal conditions, the enrichment factor was 133 for p-nitroaniline, 98 for m-nitroaniline and 115 for o-nitroaniline, and the limits of detection by HPLC were 0.3, 1.0 and 0.5 μg L?1, respectively. Linearity with determination coefficient from 0.9981 to 0.9993 was evaluated using water samples spiked with the nitroanilines at fourteen different concentration ranging from 4 to 1000 μg L?1. The ranges of intra-day and inter-day precision (n = 5) at 10 μg L?1 of nitroanilines were 1.67–7.05% and 9.4–11.6%, respectively. The VA-SMS-LLME method was successfully applied for preconcentration of nitroanilines in environmental water samples.  相似文献   

12.
A novel, efficient, and environmentally friendly method—supramolecular solvent liquid–liquid microextraction (SMS-LLME) combined with high-performance liquid chromatography (HPLC)—was first established for the determination of p-nitrophenol and o-nitrophenol in water samples. Several important parameters influencing extraction efficiency, such as the type and volume of extraction solvent, pH of sample, temperature, salt effect, extraction time, and stirring rate, were optimized in detail. Under the optimal conditions, the enrichment factor was 166 for p-nitrophenol and 160 for o-nitrophenol, and the limits of detection by HPLC were 0.26 and 0.58 μg L?1, respectively. Excellent linearity with coefficients of correlation from 0.9996 to 0.9997 was observed in the concentration range of 2–1,000 μg L?1. The ranges of intra- and interday precision (n = 5) at 100 μg L?1 of nitrophenols were 5.85–7.76 and 10.2–11.9 %, respectively. The SMS-LLME method was successfully applied for preconcentration of nitrophenols in environmental water samples.  相似文献   

13.
In the present work, a simple procedure is presented for the extraction and determination of pre-concentrated trace amounts of palladium ions through solid phase extraction (SPE) and flame atomic absorption spectrophotometry. This process was performed using Nylon-66/5-(4-dimethylaminobenzylidene) rhodanine composite nanofibres. These nanofibres were produced under optimised conditions via two-axial electrospinning technique and characterised by scanning electron microscopy and Fourier-transform infrared spectroscopy. The effect of experimental parameters including solution pH, the type and volume of eluent and contact time was investigated in extraction and desorption process. Under the optimised conditions, good linearity in the range of 0.07–8 μg L?1 and low detection limit of 0.015 μg L?1 were obtained. High enrichment factor of 187.5 and good relative standard deviation of ±2.2% at 5 μg L?1 of palladium had been achieved. The sorbent capacity for palladium adsorption was obtained 27 mg palladium per gram of nanofibres. So, the SPE was successfully applied to pre-concentrate and determine Pd(II) ions with flame atomic absorption spectrophotometer in real samples.  相似文献   

14.
《Analytical letters》2012,45(2):343-355
A new analytical procedure for the determination of five organotin compounds in several matrix wine samples is reported. The organotin compounds were extracted by microwave-assisted extraction with n-hexane. Extraction conditions, such as volume of n-hexane required, extraction temperature, and extraction time, were investigated and optimized by an orthogonal array experimental design. The determination of organotin compounds in the final extracts was carried out by liquid chromatography–inductively coupled plasma mass spectrometry. The procedure showed limits of detection between 0.029–0.049 µg · L?1. The linearity was in the range of 0.5 to 100 µg · L?1. The precision expressed as relative standard deviation (RSD) was below 9.43%. The developed method was successfully employed to analyze different matrix wine samples, and some analytes were detected at the level of 0.053 to 1.14 µg · L?1.  相似文献   

15.
An automated spectrophotometric system is proposed for the determination of bismuth in well water samples, using multi-syringe flow injection analysis (MSFIA) and exploiting a liquid waveguide capillary cell (LWCC). This method is based on the colorimetric reaction of bismuth and methylthymol blue (MTB) in the presence of polyvinylpyrrolidone (PVP) in acid medium (0.1 mol L?1 HNO3). The Bi(III)–MTB complex was measured at 600 nm. The method was optimised by multivariate techniques. Some figures of merit of the proposed system are worth being highlighted, such as its wide linear working range (between 4.9 and 600 μg L?1), its low detection limit (1.5 μg L?1 of bismuth) and its high intra-day precision and inter-day precision (0.7% (n = 12) and 1.4% (n = 5), respectively, both expressed as RSD). Moreover, a high injection frequency of 30 h?1 is achieved, as the proposed analyser is a powerful tool for fast Bi(III) determination. The method developed was successfully validated by analysing reference samples (pharmaceutical samples) by comparing the results with those obtained by ICP-OES and it was satisfactorily applied to well water samples. Besides, the present system is miniaturised allowing in situ measurements in control processes and field analysis.  相似文献   

16.
Graphene, a novel class of carbon nanostructures, has great promise for use as sorbent materials because of its ultrahigh specific surface area. A new method using reduced graphene oxide (RGO) as sorbent was developed for the preconcentration of trace amounts of zinc (Zn) to its determination by flame atomic absorption spectrometry. Zinc could be adsorbed quantitatively on RGO in the pH range of 1–9, and then eluted completely with 0.5 mL of 0.1 mol L?1 HCl. Some effective parameters on the extraction were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 0.2–15 μg L?1 with a detection limit of 0.14 μg L?1 with an enrichment factor of 100.12. The relative standard deviation for ten replicate measurements of 10 μg L?1 of Zn was 0.58 %, respectively. The proposed method was successfully applied in the analysis of rock and vegetable samples. Good spiked recoveries over the range of 99.9–100 % were obtained. This work not only proposes a useful method for sample preconcentration, but also reveals the great potential of graphene as an excellent sorbent material in analytical processes.  相似文献   

17.
Guanidino compounds guanidine, methylguanidine, guanidinoacetic acid, guanidinobutyric acid, guanidinopropionic acid, and guanidinosuccinic acid after derivatization with hexafluoroacetylacetone and ethyl chloroformate at pH 9 in aqueous phase, eluted, and separated from gas chromatographic column HP-5 (30 m × 0.32 mm id) with film thickness of 0.25 μm at an initial column temperature 90 °C for 2 min, followed by heating rate of 10 °C min?1 up to 220 °C with nitrogen flow rate of 1 mL min?1. The detection was by flame ionization detector. The linear calibration ranges of each of guanidino compounds were obtained within 1–10 μg mL?1, and the limit of detection was within 0.014–0.19 μg mL?1. The derivatization and gas chromatography elution and separation were repeatable in terms of retention time and peak height/peak area with relative standard deviation (RSD) (n = 4) within 1.7–2.9 % and 1.4–2.8 %, respectively. The method was applied for the determination of guanidino compounds from deproteinized serum of uremic patients and healthy volunteers, and was found in the range below the limit of quantitation (BLOQ) to 1.25 μg mL?1 with RSD within 1.4–3.6 %, and BLOQ to 0.4 μg mL?1 with RSD 1.3–3.4 %, respectively. A number of pharmaceutical additives did not effect the determination with RSD within ±3.1 %.  相似文献   

18.
A new microextraction method termed ionic liquid dispersive liquid-phase microextraction has been developed for the rapid enrichment and sensitive determination of tetrabromobisphenol A in environmental water samples prior to high-performance liquid chromatography–electrospray tandem mass spectrometry. Instead of using toxic organic solvents, green solvent ionic liquid was used as extraction solvent. Factors that may influence the enrichment efficiency, such as type and volume of ionic liquid, type and volume of disperser solvent, sample pH, extraction time and NaCl content were investigated and optimized in detail. Under optimum conditions, linearity of the method was observed over the range 1–100 μg L?1 with correlation coefficient 0.9986. The proposed method has been found to have excellent sensitivity with limit of detection 0.06 μg L?1 and precision 6.95% (RSD, n = 5). This method has been successfully applied to analyze real environmental water samples and satisfactory results were achieved. All these results indicated that the present method was an environmentally friendly method for the rapid enrichment and sensitive analysis of tetrabromobisphenol A at trace level in environmental water samples.  相似文献   

19.
A magnetic molecularly imprinted polymer (MMIP) was fabricated and used as the sorbent for the MMIP-dispersive solid-phase microextraction of fenitrothion prior its determination by high-performance liquid chromatography equipped with an ultraviolet detector. The MMIP was prepared using functionalized Fe3O4 nanoparticles as the magnetic supporter. Methacrylic acid, ethylene glycol dimethacrylate and fenitrothion were used as the functional monomer, the cross-linker and the template, respectively. The properties of the resultant MMIP were evaluated using X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The sorbent exhibited high selectivity and affinity toward fenitrothion compared to other organophosphate pesticides with the maximum adsorption capacity of 31.5 mg g?1. The effective variables on the extraction were optimized by univariable and MultiSimplex methods. The calibration curve exhibited linearity over the concentration range of 0.3–50.0 μg L?1 with the limit of detection of 0.1 μg L?1. The relative standard deviations at 10.0 μg L?1 level of FNT (n = 5) for intra- and inter-day assays were 1.6 and 3.1%, respectively. The proposed method was successfully used for the determination of trace amounts of FNT in food and water samples.  相似文献   

20.
A fully automated method consisting of microextraction by packed sorbent (MEPS) coupled directly to programmed temperature vaporizer–gas chromatography–mass spectrometry (PTV–GC–MS) has been developed to determine the 12 chlorobenzene congeners (chlorobenzene; 1,2-, 1,3-, and 1,4-dichlorobenzene; 1,2,3-, 1,2,4-, and 1,3,5-trichlorobenzene; 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-tetrachlorobenzene; pentachlorobenzene; and hexachlorobenzene) in water samples. The effects of the variables on MEPS extraction, using a C18 sorbent, and the instrumental PTV conditions were studied. The internal standard 1,4-dichlorobenzene d4 was used as a surrogate. The proposed method afforded good reproducibility, with relative standard deviations (RSD %) lower than 12 %. The limits of detection varied between 0.0003 μg L?1 for 1,2,3,4-tetrachlorobenzene and 0.07 μg L?1 for 1,3- and 1,4-dichlorobenzene, while those of quantification varied between 0.001 μg L?1 and 0.2 μg L?1 for the same compounds. Accuracy of the proposed method was confirmed by applying it to the determination of chlorobenzenes in different spiked water samples, including river, reservoir, and effluent wastewater.
Figure
Experimental setup for automated MEPS methodology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号