首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of functional groups on polymer adsorption onto titania pigment particles have been investigated as a function of pH and ionic strength using polyacrylic acid and modified polyacrylamides. The polyacrylamides include the homopolymer, an anionic copolymer with hydroxyl and carboxylate group substitution, and a nonionic copolymer with hydroxyl group substitution. Adsorption isotherms and infrared spectroscopy were used to examine the polymer-pigment interactions. The adsorption of the polyacrylic acid and anionic polyacrylamide on titania pigment is greatest when electrostatic repulsion is absent or reduced. At low pH values, below the pigment isoelectric point (IEP), or at high ionic strength, the adsorption density of the anionic polymers on titania pigment is high, while at higher pH values above the pigment IEP, the adsorption density decreases. But the adsorption of nonionic polymers on titania pigment is not influenced by either ionic strength or pH. Acrylamide groups were found to hydrogen bond with the titania pigment surface, independent of pH. With the inclusion of hydroxyl functional groups into the polyacrylamide chain, the polymer adsorption density increased without increased adsorption affinity. Carboxylate functional groups in the anionic polymers strongly interact with the pigment surface, producing the highest adsorption density at low pH values. All polymers exhibit Langmuir adsorption behavior with hydrogen bonding found as the dominant mechanism of adsorption in addition to electrostatic interaction occurring for the anionic polymers.  相似文献   

2.
The adsorption of human serum albumin (HSA) onto colloidal TiO2 (P25 Degussa) particles was studied in NaCl electrolyte at different solution pH and ionic strength. The HSA-TiO2 interactions were studied using adsorption isotherms and the electrokinetic properties of HSA-covered TiO2 particles were monitored by electrophoretic mobility measurements. The adsorption behavior shows a remarkable dependence of the maximum coverage degree on pH and was almost independent of the ionic strength. Other characteristic features such as maximum adsorption values at the protein isoelectric point (IEP approximately 4.7) and low-affinity isotherms that showed surface saturation even under unfavorable electrostatic conditions (at pH values far away from the HSA IEP and TiO2 PZC) were observed. Structural and electrostatic effects can explain the diminution of HSA adsorption under these conditions, assuming that protein molecules behave as soft particles. Adsorption reactions are discussed, taking into account acid-base functional groups of the protein and the surface oxide in different pH ranges, considering various types of interactions.  相似文献   

3.
Adsorption of brush copolymers, bearing sulfonate groups and polyethylene glycol segments, on to alumina particles in suspension in water has been investigated. Study of the adsorption isotherms revealed that the copolymers displayed a strong affinity for the surface of the alumina regardless of the fraction of ionic groups on the polymer. For poly(ethylene glycol) content greater than 50%, the adsorption isotherms revealed an initial adsorption plateau followed by a second one. The shape of the adsorption isotherms was interpreted in terms of the polymer configuration at the solid-to-liquid interface. The effects of the pH and the ionic force on adsorption were studied and connected to the effects of interaction between chain segments at the surface of the alumina particles. Changes in the electrokinetic properties of the alumina particles after addition of the copolymers were investigated by following the zeta potential of particles as a function of pH. In the presence of the copolymer continuous shift of the isoelectric point IEP to a more acidic values was observed. Beyond a certain concentration the zeta potential remained negative regardless of the pH.  相似文献   

4.
The surface of naturally hydrophobic mineral pyrophyllite was modified to hydrophilic by treatment with prehydrolyzed N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (APEO) coupling agent to prepare a novel and effective adsorbent for the removal of 4-nitrophenol (4-NP) from aqueous solutions. XRD, FTIR, and SEM analyses were used to characterize the surface modification. It was found that after the grafting procedure, heat treatment at 110 degrees C results in condensation reaction between the OH groups of the APEO molecule and the hydroxyl groups and/or oxygen atoms on the pyrophyllite surface and the adsorption of 4-NP by APEO-modified pyrophyllite involves interactions between dissociated 4-NP molecules and protonated amine groups of APEO molecules attached to the mineral surface. Adsorption equilibrium data for 4-NP adsorption on APEO-treated and untreated pyrophyllite were most satisfactorily fitted using the Freundlich adsorption isotherm and adsorption capacity was found to be 0.268 mg/g for modified pyrophyllite whereas it was only 0.105 mg/g for untreated pyrophyllite.  相似文献   

5.
The reversible switching of uptake and release of the proteins lysozyme (LYZ, IEP = 11.1) and human serum albumin (HSA, IEP = 4.8) at the surface attached polyelectrolyte multilayer (PEM) consisting of poly(ethylene-imine) (PEI) and poly(acrylic acid) (PAC) is shown. Protein adsorption could be switched by pH setting due to electrostatic interaction. Adsorption of positively charged LYZ at PEM-6 took place at pH = 7.3, where the outermost PAC layer was negatively charged. Complete desorption was obtained at pH = 4, where the outermost PAC layer was neutral. Additionally the charge state of the last adsorbed PAC layer in dependence of the pH of the medium could be determined in the ATR-FTIR difference spectra by the ν(COO) and ν(C=O) band due to carboxylate and carboxylic acid groups. Adsorption of negatively charged HSA at PEM-7 was achieved at pH = 7.3, where the outermost PEI layer was positively charged. Part desorption was obtained at pH = 10, where the outermost PEI layer was neutral. PEM of PEI/PAC may be used for the development of bioactive and bionert materials and protein sensors.  相似文献   

6.
The adsorption and photodecomposition of seven kinds of amino acids on a TiO2 surface were investigated by zeta potential measurements and 1H NMR spectroscopy in TiO2 aqueous suspension systems. The decomposition rates increased in the order of Phe < Ala < Asp < Trp < Asn < His < Ser. For Phe, Trp, Asn, His, and Ser, the isoelectric point (IEP) of TiO2 shifted to a lower pH with increasing decomposition rates upon adsorption on TiO2, suggesting that the effective adsorption and photocatalytic sites for these amino acids should be the basic terminal OH on the solid surface. Since the amino acids that decomposed faster than the others contain -OH (Ser), -NH (Trp, His), or -NH2 (Asn) in their side chain, they are considered to interact with the basic terminal OH groups more preferably by the side chain and are vulnerable to photocatalytic oxidation. On the other hand, Ala interacts with the acidic bridged OH on TiO2 to cause an IEP shift to a higher pH. The correlation of the surface hydroxyl groups with the photocatalysis of amino acids was verified by the use of calcined TiO2 without surface hydroxyl groups.  相似文献   

7.
Selenite adsorption on water-washed manganese nodule leached residues (WMNLR) was studied with the aim of detoxifying industrial effluents before their safe disposal into the environment. WMNLR, a solid waste material, was characterized with the help of XRD, FTIR, TG-DTA, pH(pzc), BET surface area, surface oxygen, surface hydroxyl group, and chemical analyses. The adsorption behavior of WMNLR toward selenite was studied as a function of time, pH, temperature, and concentration of adsorbate and adsorbent. Increased adsorption capacity with rise in temperature indicates that the adsorption process was endothermic in nature. Based on the thermodynamic parameters such as the Gibbs free energy change, standard enthalpy change, and standard entropy change, the adsorption process was found to be spontaneous and endothermic in nature. Adsorption followed second-order kinetics. The adsorption capacity of the material was found to be 54.6 mg g(-1) at 60 mg L(-1) of selenite concentration at pH 5 in 3 h contact time.  相似文献   

8.
Adsorption kinetics, adsorption isotherms and surface complexation of trimesic acid onto alpha-alumina surfaces were investigated. Adsorption kinetics of trimesic acid with an initial concentration of 0.5 mM onto alpha-alumina surfaces were carried out in batch method in presence of 0.05 mM NaCl (aq) at pH 6 and 298.15, 303.15 and 313.15 K. Adsorption isotherms were carried out at 298.15 K, pH 5-9, and 0.05 mM NaCl (aq) by varying trimesic acid concentration from 0.01 to 0.6 mM. Three kinetics equations such as pseudo-first-order, pseudo-second-order and Ho equations were used to estimate the kinetics parameters of the adsorption of trimesic acid on the alpha-alumina surfaces. Ho equation fits the experimental kinetics data significantly better and the estimated equilibrium concentration is in excellent agreement with the experimental value. The adsorption data were fitted to Freundlich and Langmuir adsorption model and the later best fits the adsorption isotherms. Comparison of adsorption density of trimesic acid with that of benzoic and phthalic acids follows the sequence: benzoic acid < trimesic acid < phthalic acid. The negative activation energy and the Gibbs free energy for adsorption indicate that the adsorption of trimesic acid onto alpha-alumina is spontaneous and facile. DRIFT spectroscopic studies reveal that trimesate forms outer-sphere complexes with the surface hydroxyl groups that are generated onto alpha-alumina surfaces in the pH range of the study.  相似文献   

9.
Atomistic simulation techniques are used to simulate surface structure and adsorption behavior of scarcely floatable wollastonite mineral in the presence of molecular and dissociated water, methanoic acid, and methylamine. The latter two additives represent the two widely used collector head-group molecules. The static energy minimization code METADISE was used to perform the simulation to obtain pure surface energy and adsorption energy in the presence of added molecule. The hydroxylation was performed on those surfaces where low-coordinated silicon was made to saturate by bonding with hydroxyl group, and the subsequent charge neutralization was maintained by adding proton on single-coordinated surface oxygen. A comparison of surface energies revealed that all the surfaces become stabilized in the presence of added molecules; however, the presence of methylamine decreased the surface energy to lower values. Adsorption of dissociated water is preferred by the {100} and {102} surfaces, whereas the {001} surface preferred methylamine adsorption, because these show highly negative adsorption energies. In terms of molecular adsorption, the preferred adsorption sequence for all the surfaces is methylamine > methanoic acid > water without considering coadsorption. For the {100} and {102} surfaces, the adsorption energy values of carboxylic acid and amine are more negative than that of water and therefore we conclude that both carboxyl and amine head-group molecules adsorb preferably on wollastonite. Our simulation verify usability of carboxylic acid head group as widely used collectors for wollastonite flotation and, at the same time, it predicts the use of amine head-group collectors as possible modifiers, which corresponds well with our experimental findings.  相似文献   

10.
The effect of L-serine in supersaturated solutions of calcium phosphate was investigated under plethostatic conditions. The rates of crystal growth measured in the presence of L-serine at relatively high concentrations and in the range between 2x10(-3) and 1x10(-2) mol dm(-3) were appreciably reduced. The inhibitory effect of L-serine was found to be due to blocking of a portion of the active growth sites by adsorption. Kinetics measurements in the presence of L-serine as well as adsorption isotherm analysis suggested Langmuir-type adsorption of L-serine on the surface of hydroxyapatite (HAP) with a relatively low affinity for the substrate. Adsorption experiments showed that at pH 7.4 considerable adsorption of L-serine onto HAP takes place, whereas at pH 10.0 the adsorption was negligible, suggesting that electrostatic interactions are dominant. Attraction between the positively charged protonated amino group of the L-serine molecule and the negatively charged HAP surface contributed largely to the adsorption. This was corroborated by the fact that, in the presence of L-serine in the solution, a significant shift of zeta-potential of the HAP particles to less negative values was found at pH values close to 7.4. At pH values higher than 10.0 essentially no shift of zeta-potential takes place. On the basis of the experimental results, a model was proposed according to which L-serine absorbs on the surface of HAP through electrostatic attractions exerted between one negative site of the HAP surface, i.e., phosphate or hydroxyl ion, and the positively charged protonated amino group of one L-serine molecule, forming a surface ion pair. Copyright 2001 Academic Press.  相似文献   

11.
The effect of different 2-acrylamido-2-methylpropanesulfonic acid sodium salt (AMPS)-methoxypolyethyleneglycol methacrylate (MPEG) comb-like copolymers on the adsorption behavior, electrokinetic and rheological properties of alumina suspensions has been investigated. The change in adsorption isotherms with the content of the two monomers, the medium pH and the ionic strength indicated that the interaction of these copolymers was found to be controlled by both the fraction of ionic groups on the polymer and by the length of the polyethyleneglycol (PEG) segments. Adsorption of the copolymers on alumina particles is accompanied by a shift in the IEP toward acid pH values and may lead to a charge reversal above a certain level. The presence of the PEG segment equally affects the magnitude of the zeta potential by moving the shear plane forward. Addition of the copolymers greatly affects the rheological behavior of the suspension; the viscosity at a defined shear rate decreases and reaches an optimum, which is all the lower as the fraction of the ionic groups is higher. The dispersing effect of the copolymer was controlled by both the ionization level of the copolymer and by the length of the PEG segments.  相似文献   

12.
Adsorption of cations (Na(+), Ca(2+), Ba(2+)) onto negatively charged (pH 10.4) hematite (alpha-Fe(2)O(3)) particles has been studied. The oxide material was carefully prepared in order to obtain monodisperse suspensions of well-crystallized, quasi-spherical particles (50 nm in diameter). The isoelectric point (IEP) is located at pH 8.5. Adsorption of barium ions onto oxide particles was carried out and the electrophoretic mobility was measured throughout the adsorption experiment. Comparison with calcium adsorption at full coverage reveals a higher uptake of Ba(2+). In both cases it shows also that chloride ions coadsorb with M(2) ions. Simultaneous uptake of the positive and negative ions explains why the electrophoretic mobility does not reverse to cationic migration. A theoretical study of the surface speciation has been carried out, using the MuSiC model. It reveals the presence of negative as well as positive sites on both sides of the point of zero charge (PZC) of the hematite particles, which may explain the coadsorption of Ba(2+) and Cl(-) at pH 10.4. The effective charge of the oxide particles, calculated from the electrophoretic mobility, is in very good agreement with the results found with the MuSiC modelization and the chloride/barium adsorption ratio. It also verifies the theory of ionic condensation. Calorimetric measurements gave a negative heat for the overall reaction occurring when Ba(2+)/Cl(-) ions adsorb onto hematite. Despite the fact that anions (Cl(-) and OH(-)) adsorption onto mineral oxides is an exothermic phenomenon, it is likely that barium and calcium adsorption is endothermic, denoting the formation of an inner-sphere complex as reported in the literature.  相似文献   

13.
The separation and purification of important biomolecule deoxyribonucleic acid (DNA) molecules are extremely important. The adsorption technique among these methods is highly preferred as the adsorbent cryogels are pretty much used due to large pores and the associated flow channels. In this study, the adsorption of DNA via Co(II) immobilized poly(2-hydroxyethyl methacrylate-glycidyl methacrylate) [poly(HEMA-GMA)] cryogels was performed under varying conditions of pH, interaction time, initial DNA concentration, temperature, and ionic strength. For the characterization of cryogels; swelling test, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), surface area (BET), elemental and ICP-OES analysis were performed. L-lysine amino acid was chosen as Co(II)-chelating agent and the adsorption capacity of cryogels was determined as 33.81 mg DNA/g cryogel. Adsorption of pea DNA was studied under the optimum adsorption conditions and DNA adsorption capacity of cryogels was found as 10.14 mg DNA/g cryogel. The adsorption process was examined via Langmuir and Freundlich isotherm models and the Langmuir adsorption model was determined to be more appropriate for the DNA adsorption onto cryogels.  相似文献   

14.
A systematic investigation of the adsorption of oleic acid was under-taken with various minerals and surface treated minerals, viz., kaolinite, treated kaolinites, montmorillonites, talcs, gibbsites, calcites and a treated calcite. Adsorption onto kaolinite, two of the treated kaolinites (amine and MgSiO3 treated), talcs and gibbsites was well correlated by the Langmuir model, while adsorption on the treated calcite was well correlated by the Freundlich model. Adsorption on a cationic polymer-treated kaolinite was explained in terms of a cooperative mechanism. Adsorption onto montmorillonites was explained in terms of a penetrative mechanism involving exchangeable cations.Oleic acid adsorption was compared with triolein adsorption on one of the montmorillonites, two adsorbents produced by the surface treatment of this montmorillonite, and one of the talcs. The triolein adsorption of the montmorillonite was considerably less than its oleic acid adsorption, and was explained in terms of a cooperative mechanism. Triolein adsorption of the treated montmorillonites, and the talc was well correlated by the Langmuir model. Larger amounts of triolein were taken up by the treated montmorillonites than by the untreated montmorillonite. The triolein adsorption of the talc was greater than its oleic acid adsorption.  相似文献   

15.
We studied bovine serum albumin (BSA) and α-chymotrypsin adsorption onto mica surfaces over a large pH range by atomic force microscopy (AFM) measurements in liquid. Data analyses (height, roughness and roughness factor) brought new insights on the conformation of proteins in soil environments, with mica as a model of soil phyllosilicates and non-hydrophobic surfaces. Validation of AFM approach was performed on BSA, whose behavior was previously described by nuclear magnetic resonance and infra-red spectroscopic methods. Maximum adsorption was observed near the isoelectric point (IEP). A stronger interaction and a lower amount of adsorbed proteins were observed below the IEP, which contrasted with the progressive decrease of adsorption above the IEP. We then studied the adsorption of α-chymotrypsin, a proteolytic enzyme commonly found in soils. AFM pictures demonstrated a complete coverage of the mica surface at the IEP in contrast to the BSA case. Comparison of the AFM data with other indirect methods broadened the understanding of α-chymotrypsin adsorption process through the direct display of the protein adsorption patterns as a function of pH.  相似文献   

16.
Adsorption of purified apo-ovotransferrin at the air-water interface was studied by ellipsometry, surface tension, polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and shear elastic constant measurements. No significant difference was observed between pH 6.5 and 8.0 as regards the final value of surface concentration and surface pressure. However at low concentration, a weak barrier to adsorption is evidenced at pH 6.5 and confirmed by PM-IRRAS measurements. At a pH where the protein net charge is negative (pH 8.0), the behavior of ovotransferrin at the air-water interface is more influenced by charge effects rather than bulk concentration effects. At this pH, the interface exhibits a low shear elastic constant and a spectral signature not usual for globular proteins.  相似文献   

17.
The electrokinetic behavior of fluorite mineral was studied under various partical sizes and different concentrations of oleic acid at constant pH. The particle size has been reduced with an increase in activation time. The surface energies of milled fluorite minerals were calculated theoretically and experimentally. The zeta potential of the fluorite/water system has shifted to lower side with an increase in particle size. The isoelectric point (iep) of fluorite minerals has been shifted to lower side with increase in oleic acid concentration. This indicates the chemisorbed oleate formation on fluorite. A sharp decrease in zeta potential in the pH range of 6.5–8.4 and the decrease in calculated free energy of adsorption shows the formation of calcium dioleate precipitate on fluorite.  相似文献   

18.
Adsorption processes on poorly crystalline boehmite (PCB) particle films have been studied using attenuated total reflection infrared spectroscopy. This method allows the in-situ investigation of wet surface chemical processes. Thin films of aggregated particles of PCB that are stable between pH 4 and 11 have been prepared by drying aqueous PCB dispersions. Carbonate adsorbs to the PCB films during the film formation process but can be removed without impact on the film by washing with alkali at pH 10. The adsorption of acetylacetone (acac) to the surface of PCB has been studied at the solid/liquid and solid/gas interfaces. The concomitant changes in the OH deformations of hydroxyl groups present on the surface has been observed. The IR absorption of surface hydroxyl groups involved in adsorption of a bidentate chelating ligand have been spectroscopically isolated through their interaction with acac.  相似文献   

19.
Bauxite refinery residue (BRR) is a highly caustic, iron hydroxide-rich byproduct from alumina production. Some chemical treatments of BRR reduce soluble alkalinity and lower residue pH (to values <10) and generate a modified BRR (MBRR). MBRR has excellent acid neutralizing (ANC) and trace-metal adsorption capacities, making it particularly useful in environmental remediation. However, soluble ANC makes standard acid-base isoelectric point (IEP) determination difficult. Consequently, the IEP of a BRR and five MBRR derivatives (sulfuric acid-, carbon dioxide-, seawater-, a hybrid neutralization, i.e, partial CO(2) neutralization followed by seawater, and an activated-seawater-neutralized MBRR) were determined using electroacoustic techniques. Residues showed three significantly different groups of IEPs (p < 0.05) based around the neutralization used. Where the primary mineral assemblage is effectively unchanged, the IEPs were not significantly different from BRR (pH 6.6-6.9). However, neutralizations generating neoformational minerals (alkalinity precipitation) significantly increased the IEP to pH 8.1, whereas activation (a removal of some primary mineralogy) significantly lowered the IEP to pH 6.2. Moreover, surface charging curves show that surfaces remain in the ±30 mV surface charge instability range, which provides an explanation as to why MBRRs remove trace metals and oxyanions over a broad pH range, often simultaneously. Importantly, this work shows that minor mineral components in complex mineral systems may have a disproportionate effect on the observable bulk IEP. Furthermore, this work shows the appropriateness of electroacoustic techniques in investigating samples with significant soluble mineral components (e.g., ANC).  相似文献   

20.
The adsorption of benzoic acid from aqueous solution onto high area carbon cloth at different pH values has been studied. Over a period of 125 min the adsorption process was found to follow a first-order kinetics and the rate constants were determined for the adsorption of benzoic acid at pH 2.0, 3.7, 5.3, 9.1, and 11.0. The extents of adsorption and the percentage coverage of carbon cloth surfaces were calculated at 125 min of adsorption. Adsorption isotherms at pH values of 2.0, 3.7, and 11.0 were derived at 25 degrees C. Isotherm data were treated according to Langmuir and Freundlich equations and the parameters of these equations were evaluated by regression analysis. The fit of experimental isotherm data to both equations was good. It was found that both the adsorption rate and the extent of adsorption at 125 min were the highest at pH 3.7 and decreased at higher or lower pH values. The types of interactions governing in the adsorption processes are discussed considering the surface charge and the dissociation of benzoic acid at different pH values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号