首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fluorocarbon liquids have very low sound speeds in comparison with water. The measurement of shock waves in water is complicated by its relatively high sound speed. This paper presents a fluorocarbon liquid with a sound speed of 655 m/s for use in liquid shock experiments. Experimental and numerical results of shock wave reflection from various parabolas and wedges are given. Experiments were performed in a vertical liquid shock tube. The properties including an equation of state for the liquid are given. Numerical simulations using this equation of state are performed using a finite element program. It is shown that the investigation of non-linearities in water will require shock tubes that can withstand high pressures. Due to the high B/A parameter for this fluorocarbon liquid, it is demonstrated that non-linearities can be achieved and studied at much lower pressures. Received 1 July 1996 / Accepted 26 September 1996  相似文献   

3.
Non-ideal shock tube facility effects, such as incident shock wave attenuation, can cause variations in the pressure histories seen in reflected shock wave experiments. These variations can be reduced, and in some cases eliminated, by the use of driver inserts. Driver inserts, when designed properly, act as sources of expansion waves which can counteract or compensate for gradual increases in reflected shock pressure profiles. An algorithm for the design of these inserts is provided, and example pressure measurements are presented that demonstrate the success of this approach. When these driver inserts are employed, near- ideal, constant-volume performance in reflected shock wave experiments can be achieved, even at long test times. This near-ideal behavior simplifies the interpretation of shock tube chemical kinetics experiments, particularly in experiments which are highly sensitive to temperature and pressure changes, such as measurements of ignition delay time of exothermic reactions.  相似文献   

4.
Propagation of sound and weak shock waves in gas-liquid foams is investigated theoretically and experimentally. An original physical model is developed to describe the evolution of small perturbations in a foam of polyhedral structure. The model developed takes into account both peculiarities of interface heat transfer in foam and liquid motion through the system of Plateau-Gibbs borders which results in the appearance of an additional hydrodynamic dissipative force. The Rayleigh equation analog, which takes into account the latter phenomenon, is obtained. Structure and dynamics of weak shock waves are investigated. A vertical shock tube was constructed and used to measure the parameters of weak shock wave propagation in gas-liquid foams of polyhedral structure. Spectral analysis of the data obtained shows that there are weak dispersion and strong dissipation of the initial signal. Comparison of the evolution of experimental and theoretical profiles permits to conclude that the suggested model allows to describe the peculiarities of acoustical perturbations in gas-liquid foam more precisely than it follows from the standard models. Received 15 September 1993 / Accepted 27 December 1993  相似文献   

5.
We investigate the coupling between the nonlinear Schrödinger equation and the inviscid Burgers equation, a system which models interactions between short and long waves, for instance in fluids. Well-posedness for the associated Cauchy problem remains a difficult open problem, and we tackle it here via a linearization technique. Namely, we establish a linearized stability theorem for the Schrödinger–Burgers system, when the reference solution is an entropy-satisfying shock wave to Burgers equation. Our proof is based on suitable energy estimates and on properties of hyperbolic equations with discontinuous coefficients. Numerical experiments support and expand our theoretical results.  相似文献   

6.
An experimental investigation of the elastic–plastic nature of shock wave propagation in foams was undertaken. The study involved experimental blast wave and shock tube loading of three foams, two polyurethane open-cell foams and a low-density polyethylene closed-cell foam. Evidence of precursor waves was observed in all three foam samples under various compressive wave loadings. Experiments with an impermeable membrane are used to determine if the precursor wave in an open-cell foam is a result of gas filtration or an elastic response of the foam. The differences between quasi-static and shock compression of foams is discussed in terms of their compressive strain histories and the implications for the energy absorption capacity of foam in both loading scenarios. Through a comparison of shock tube and blast wave loading techniques, suggestions are made concerning the accurate measurements of the principal shock Hugoniot in foams.  相似文献   

7.
Several MW-class spallation neutron sources are being developed in the world. Specifically, intensive and high energy protons are injected into heavy liquid metals (mercury, lead or lead-bismuth eutectic) to induce the spallation reaction that produces neutrons. At the moment when the proton beams are injected, thermal shock occurs in the liquid metal, causing pressure waves to propagate in the liquid metal, collide against the container and damage it.It is proposed that microbubbles are injected into the liquid metal to mitigate the impulsive pressure waves by means of absorption and attenuation effects. These effects are dependent on the relationship between bubble size and the rate of pressure increase. In the present experiment, a very rapid rise in pressure in the order of MPa/μs, equivalent to the rise in pressure due to proton beam injection, was simulated by the electric discharge method in a water loop test to investigate the impulsive pressure mitigation effect of injected microbubbles. The solid wall response was measured using an accelerometer, and the dynamic responses of microbubbles were observed using an ultra-high-speed camera filming at 5 × 105 frame/s. The sound velocity in bubbly water was estimated using a differential image technique. It was confirmed from the experimental results that microbubbles are effective in reducing impulsive pressure waves and to suppressing the impact vibration of the solid wall in contact with the liquid.  相似文献   

8.
The paper reports results of experiments regarding toroidal shock wave focusing in a vertical shock tube as a part of a series of converging shock wave studies. This compact vertical shock tube was designed to achieve a high degree of reproducibility with minimum shock formation distance by adopting a diaphragmless operating system. The shock tube was manufactured in the Institute of Fluid Science, Tohoku University. An aspheric lens shaped cylindrical test section was connected at the open end of the shock tube to visualize the diffraction and focusing of the toroidal shock wave released from the ring shaped shock tube opening. Pressure transducers were flush mounted on the shock tube’s test section to measure pressure histories at the converging test section. Double exposure holographic interferometry was employed to quantitatively visualize the shock waves. The whole sequence of toroidal shock wave diffraction, focusing, and its reflection from the symmetrical axis were successfully studied. The transition of reflected shock waves was observed.  相似文献   

9.
气液两相流压力波传播速度研究   总被引:9,自引:0,他引:9  
将双流体模型用于绝热无相的管道气液两相流,依据小扰动线化分析原理,导出了压力波波数K方程通过对不同空隙率下肉体上压力波小随角频率变化的计算,研究了虚拟质量力和狭义相间阻力对压力波波速及其人色散性的影响。对泡状流和弹状流压力波波速的计算结果与前人的测量结果作了比较,两者符合良好。  相似文献   

10.
Shock wave attenuation in polyurethane foams is investigated experimentally and numerically. This study is a part of research project regarding shock propagation in polyurethane foams with high-porosities = 0.951 ~ 0.977 and low densities of ρc = 27.6 ~55.8 kg/m3. Sixty Millimeter long cylindrical foams with various cell numbers and foam insertion condition were installed in a horizontal shock tube of 50 mm i.d. and 5.4 mm in length. Results of pressure measurements in air/foam combination are compared with CFD simulation solving the one-dimensional Euler equations. In the case of a foam B fixed on shock tube wall, pressures at the shock tube end wall increases relatively slowly comparing to non-fixed foam, free to move and a foam A fixed on shock tube wall. This implies that elastic inertia hardly contributes to pressure build up. Pressures behind a foam C fixed on shock tube wall decrease indicating that shock wave is degenerated into compression wave. Dimensionless impulse and attenuation factor decrease as the initial cell number increases. The momentum loss varies depending on cell structure and cell number.  相似文献   

11.
We deal with a pressure wave of finite amplitude propagating in a gas and liquid medium or in the fluid in an elastic tube. We study the effects of pipe elasticity on the propagation velocity of the pressure wave. Pressure waves of finite amplitude progressing in the two-phase flow are treated considering the void fraction change due to pressure rise. The propagation velocity of the two-phase shock wave is also investigated, and the behavior of the reflection of the pressure wave at the rigid wall is analyzed and compared to that in a pure gas or liquid. The results are compared to experimental data of a pressure wave propagating in the two-phase flow in a vertical shock tube.  相似文献   

12.
Momentum transfer from shock waves (SWs) of various intensity (from 0.05 MPa to 0.5 MPa in amplitude) to water containing air bubbles 2.5 to 4 mm of mean diameter is studied both experimentally and by means of numerical simulation. Experiments are performed in a vertical shock tube of a 50 × 100 mm2 rectangular cross section consisting of a 495-mm long high-pressure section (HPS), 495-mm long low-pressure section (LPS), and 990 mm long test section (TS) equipped with an air bubbler and filled with water. Experiments have shown that as the initial gas volume fraction in water increases from 0 to 0.3 the momentum imparted in bubbly water by SWs increases monotonically, gradually levelling off at an air volume fraction of about 0.30. The experimental data are confirmed by two-dimensional (2D) simulation of SW propagation in bubbly water in terms of the SW velocity versus the air content, pressure profiles, as well as liquid and gas velocity behind the shock front.  相似文献   

13.
The propagation of weak shock waves and the conditions for their existence in a gas-liquid medium are studied in [1]. The article [2] is devoted to an examination of powerful shock waves in liquids containing gas bubbles. The possibility of the existence in such a medium of a shock wave having an oscillatory pressure profile at the front is demonstrated in [3] based on the general results of nonlinear wave dynamics. It is shown in [4, 5] that a shock wave in a gas-liquid mixture actually has a profile having an oscillating pressure. The drawback of [3–5] is the necessity of postulating the existence of the shock waves. This is connected with the absence of a direct calculation of the dissipative effects in the fundamental equations. The present article is devoted to the theoretical and experimental study of the structure of a shock wave in a gas-liquid medium. It is shown, within the framework of a homogeneous biphasic model, that the structure of the shock wave can be studied on the basis of the Burgers-Korteweg-de Vries equation. The results of piezoelectric measurements of the pressure profile along the shock wave front agree qualitatively with the theoretical representations of the structure of the shock wave.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 65–69, May–June, 1973.  相似文献   

14.
Several theoretical and experimental studies have been devoted to the problem of the nonstationary action of the stream behind a shock wave on bodies of varied shape. In particular, in [1], the pressure and density are calculated for flow about bodies of the more typical shapes in the initial stage of the process. The basic relations which accompany the interaction of shock waves are considered in [2, 3]. The analysis of the phenomena of diffraction of shock waves on the sphere, cylinder, and cone is presented in [4]. Problems of unsteady flow about a wing are examined in [5, 6]. A detailed review of the foreign studies on unsteady flow is given in [7]. Of great practical interest is the question of the time for flow formation and the magnitudes of the unsteady loads during this period. Experimental investigations have been made recently [8, 9] in which some criteria are presented for estimating the bow shock formation time for supersonic flow about the sphere and cylinder with flat blunting. However the question of the formation time of the stationary pressure on the body surface is not referred to in these studies and no relationship is shown between the transient position of the reflected wave and the corresponding unsteady pressure on the surface. Moreover, in [8] the dimensionless time criterion is determined very approximately, independently of the Mach number of the shock wave. The present study was undertaken with the object of determining the basic criteria which characterize unsteady flow about bodies behind a plane shock wave which has time-independent parameters, and clarification of the shock wave reflected from the body and the pressure on the surface of the body during the transient period. The most typical body shapes were studied: 1) a cylinder with flat face aligned with the stream; 2) a spherically-blunted cylinder; and 3) a cylinder transverse to the stream. The experiments were conducted in a conventional shock tube using the single-diaphragm scheme. The measurements of the pressure on the models and the velocity of the incident shock wave were made using the technique analogous to that of [10, 11]. A highspeed movie camera was used to record the pattern of the wave diffraction on the body. The Mach number of the incident shock wave varied in the range from M=1.5 to M≈6.0, which corresponded to a range of Mach numbers M of the stream behind the shock wave from 0.6 to 2.1. The calculations of the required gas dynamic parameters for high temperatures were made with account for equilibrium dissociation of the air on the basis of the data of [10, 12, 13]. The magnitude of the relative maximal shock wave standoff Δ at the stagnation point obtained in the present experiments was compared with the values of Δ from other studies. In the case of the flat-blunted cylinder it was in good agreement with the results of [8–14], and in the case of the spherically-blunted cylinder and the transverse cylinder it was in agreement with the results of [15].  相似文献   

15.
Due to the exceptional high inlet pressures up to 2,000 bar flow dynamics and efficiency of modern injection systems are controlled by high frequency wave dynamics of the compressible liquid flow. Corresponding to alternating shock and expansion waves the liquid fluid evaporates and recondenses instantaneously. Here we present CFD simulations of the time accurate evolution of cavitating flows in 2-D plane and in six-hole injection nozzles with focus on the wave dynamics just after initialisation of the flow and within the time scale Δt ≤ 10?4 s of pilot and multi-point injection. Due to shock reflections at the bottom of the sack hole the instantaneous maximum pressure increases more than three times higher as compared with the prescribed pressure at the nozzle inlet. For instance, in case of an inlet pressure of 600 bar the maximum pressure in the sack and therefore ahead of the nozzle bore holes reaches about 2,100 bar. It is quite reasonable that this amplification of the pressure affects the evolution of the convective flow and therefore the mass flow through the nozzle bore holes.  相似文献   

16.
Shock wave structure in a bubbly mixture composed of a cluster of gas bubbles in a quiescent liquid with initial void fractions around 10% inside a 3D rectangular domain excited by a sudden increase in the pressure at one boundary is investigated using the front tracking/finite volume method. The effects of bubble/bubble interactions and bubble deformations are, therefore, investigated for further modeling. The liquid is taken to be incompressible while the bubbles are assumed to be compressible. The gas pressure inside the bubbles is taken uniform and is assumed to vary isothermally. Results obtained for the pressure distribution at different locations along the direction of propagation show the characteristics of one-dimensional unsteady shock propagation evolving towards steady-state. The steady-state shock structures obtained by the present direct numerical simulations, which show a transition from A-type to C-type steady-state shock structures, are compared with those obtained by the classical Rayleigh–Plesset equation and by a modified Rayleigh–Plesset equation accounting for bubble/bubble interactions in the mean-field theory.   相似文献   

17.
为了评估高温气冷核反应堆热交换器H2泄漏、爆炸的安全性,研究含内构件管道的H2/空气爆燃传播现象,建造了几何相似、尺寸相同的实验管道(真空筒)。分别充入不同初压和当量比H2/空气混合物,在真空筒顶部点火并引发爆燃,利用多通道瞬态压力测量和数据采集系统,记录各测点压力时间曲线。结果表明:对化学计量比H2/空气混合物,在慢化剂室和真空筒顶部空间产生爆燃,邻近测点的压力时间曲线显示了冲击波特征。该冲击波通过慢化剂室和真空筒侧壁的狭缝(2.5 mm),进入含内构件的扩张管道并形成爆燃。冲击波在真空筒端部反射、向后传播并与火焰相互作用,爆炸流场波系复杂。对富油和低初压化学计量比混合物,在慢化剂室和真空筒顶部空间产生燃烧,高温富油燃气的压力上升速率较慢。当燃气通过上述狭缝时,在真空筒突扩空间内再次点火并形成较强爆燃,压力时间曲线显示了冲击波特征及其在端面的反射。  相似文献   

18.
A phenomenological study of the process occurring when a plane shock wave reflected off an aqueous foam column filling the test section of a vertical shock tube has been undertaken. The experiments were conducted with initial shock wave Mach numbers in the range $1.25\le {M}_\mathrm{s} \le 1.7$ and foam column heights in the range 100–450 mm. Miniature piezotrone circuit electronic pressure transducers were used to record the pressure histories upstream and alongside the foam column. The aim of these experiments was to find a simple way to eliminate a spatial averaging as an artifact of the pressure history recorded by the side-on transducer. For this purpose, we discuss first the common behaviors of the pressure traces in extended time scales. These observations evidently quantify the low frequency variations of the pressure field within the different flow domains of the shock tube. Thereafter, we focus on the fronts of the pressure signals, which, in turn, characterize the high-frequency response of the foam column to the shock wave impact. Since the front shape and the amplitude of the pressure signal most likely play a significant role in the foam destruction, phase changes and/or other physical factors, such as high capacity, viscosity, etc., the common practice of the data processing is revised and discussed in detail. Generally, side-on pressure measurements must be used with great caution when performed in wet aqueous foams, because the low sound speed is especially prone to this effect. Since the spatial averaged recorded pressure signals do not reproduce well the real behaviors of the pressure rise, the recorded shape of the shock wave front in the foam appears much thicker. It is also found that when a thin liquid film wet the sensing membrane, the transducer sensitivity was changed. As a result, the pressure recorded in the foam could exceed the real amplitude of the post-shock wave flow. A simple procedure, which allows correcting this imperfection, is discussed in detail.  相似文献   

19.
The interaction of rarefaction waves of different shapes with wet water foams is studied experimentally. It is found that the observed values of the pressure are greater, while the surface velocity is lower than the corresponding values predicted by the pseudogas model. The foam breakdown starts as the pressure decreases by 0.3 atm relative to the initial pressure. During downstream propagation of the rarefaction-wave leading edge the propagation velocity decreases.Using of water-based foams as effective screens for damping blast waves in different technological processes has caused considerable interest in studying wave propagation in such systems. The pressure wave dynamics in a foam have been investigated in much detail, both experimentally and theoretically [1–3]. However, the interaction of rarefaction waves with foam has practically never been studied, although it was mentioned in [4] that the unloading phase following the compression wave phase is one of the factors defining the damaging action of blast waves. Besides blast-wave damping, rarefaction wave propagation takes place if such waves are used to breakup foam in oil-producing wells [5].Below, the interaction of rarefaction waves of different shapes with wet water foams is studied. The vertical shock tube described in detail in [3] was used in these experiments.Brest. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 76–82, March–April, 1995.  相似文献   

20.
There is a lack of data on transient interphase shear forces on bubbles. The present work is an experimental and analytical investigation of unsteady bubble motions induced by shock waves. Bubble trajectories were monitored in a shock tube using high-speed Schlieren photographs. Pressure histories at two locations weere used to determine the average wave speed in the bubbly mixture. An equation of motion was developed and solved for predicting the bubble trajectories and velocities. Reasonable agreement is obtained between the experimental results and the analytical predictions. It was found that for experimental range of Reynolds numbers (200 – 12,000), a constant drag coefficient cD ? 2.6 can be utilized to estimate the drag force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号