首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum dots (QDs) have received more and more attention as a novel example of nanomaterials. Due to their unique fluorescent characteristics,quantum dots have been successfully applied in biotech-nology and medicine applications. Recently,the toxicity and the potential environmental effects of QDs have become a research hotspot. In this paper,toxicological effects of QDs are reviewed,and the prospects and research directions are given based on the analysis of this research field.  相似文献   

2.
1 Introduction In the past two decades,photoluminescent semiconductor quantum dots(QDs) have received intensive attention for a variety of promising properties and applications[1,2],especially for their potential application in cellular imaging[3-5].QDs with high quantum yield have been prepared based on cadmium(zinc) selenide(sulfide) and related core-shell composites[6-8].However,the release of Cd2+,S2-and Se2-ions inevitably causes serious health and environmental concerns.Therefore,many efforts have been devoted to developing benign alternatives with enhanced photoluminescence,such as silicon nanoparticles and nanowires[9,10].  相似文献   

3.
Metal-organic frameworks(MOFs)as a class of porous functional materials have attracted more and more attention for biomedical applications.To date,MOFs have been developed for bioimaging based on a series of advantages such as the large surface areas,high porosity,fluorescence functionalities and good biocompatibility.It is worth noting that organic or inorganic fluorescent materials such as fluorescent dyes,quantum dots,metal nanoclusters and nanosheets can combine MOFs or be encapsulated in MOFs to form fluorescent nanocomposites for excellent imaging function.Importantly,excellent imaging capabilities are of great significance in living cells and in vivo for detection,diagnosis and cancer therapy.In this review,we focus on the recent research of the bioimaging in living cells and in vivo based on various MOF-based nanocomposites and their potential biological clinical applications.  相似文献   

4.
Fluorescent probes play a key role in modern biomedical research. As compared to inorganic quantum dots (QDs) composed with heavy metal elements, organic dye-based fluorescent nanoparticles have higher biocompatibility and are richer in variety. However, traditional organic fluorophores tend to quench fluorescence upon aggregation, which is known as aggregation-caused quenching (ACQ) effect that hinders the fabrication of highly emissive fluorescent nanoparticles. In this work, we demonstrate the synthesis of organic fluorescent dots with aggregation-induced emission (AIE) in far-red/near-infrared (FA/NIR) region. A conventional ACQ-characteristic fluorescent dye, 3,4:9,10-tetracarboxylic perylene bisimide (PBI), is converted into an AIE fluorogen through attaching two tetraphenylethylene (TPE) moieties. The fluorescent dots with surface folic acid groups are fabricated from PBI derivative (DTPEPBI), showing specific targeting effect to folate receptor-overexpressed cancer cells. In vivo studies also suggest that the folic acid-functionalized AIE dots preferentially accumulate in the tumor site through enhanced permeability and retention (EPR) effect and folate receptor-mediated active targeting effect. The low cyto-toxicity, good FR/NIR contrast and excellent targeting ability in in vitro/in vivo imaging indicate that the AIE dots have great potentials in advanced bioimaging applications.  相似文献   

5.
Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities, especially prominent in neural diseases. One of the usable ways to prevent the reactive oxygen species (ROS)-mediated cellular injury is dietary or pharmaceutical augmentation of some free radical scavenger. Water-soluble amino-fullerene is a novel compound that behaves as a free radical scavenger with excellent biology consistent. In the present study, we have synthesized and characterized a novel cystine C60 derivative for the first time, and investigated the effects on hydrogen peroxide-induced oxidative stress and apoptotic death in cultured rat pheochromocytoma (PC12) cells. PC12 cells treated with hydrogen peroxide underwent apoptotic death as determined by MTT, PI/Hoechst 33342 staining and flow cytometry analysis. These results suggested that cystine C60 derivative has the potential to prevent oxidative stress-induced cell death and has no evident toxicity.  相似文献   

6.
An aqueous synthetic route has been developed for the preparation of mercaptosuccinic acid(MSA)-capped CdTe quantum dots (QDs) using TeO2 as tellurium source and sodium borohydride as reductant.The size and the emission color of CdTe QDs can be tuned by varying the reflux time.The obtained QDs were characterized by photoluminescence(PL) spectroscopy,X-ray powder diffraction(XRD) and high-resolution transmission electron microscopy(HRTEM).The results show that the CdTe QDs were of zinc-blende crystal structure in a sphere-like shape.  相似文献   

7.
Carbon dots have unique advantages in biological applications owing to their excellent optical prope rties.However,the biosafety evaluation of carbon dots has limitations owing to cytotoxicity in vitro,and the re is little pre-safety evaluation before in vivo and clinical applications.Whether the carbon dots are or not suitable for applications in vivo,evaluation analysis can be made based on hemolysis and changes in erythrocyte morphology.In this work,a green fluorescent N,S-doped carbon dots(N,S-CDs)were obtained by hydrothermal method,tobias acid,and m-phenylenediamine as precursors.N,S-CDs not only possessed excellent dispersibility,uniform particle size,high quantum yield(37.2%)and stable photoluminescence property but also retain their photostability and stro ng fluorescence intensity in the acid/alkaline solutions,different ionic strengths(NaCl)and under 365 nm UV illumination.Moreove r,the N,S-CDs displayed low cytotoxicity and high cellular uptake efficiency in human umbilical vein endothelial cells(HUVEC)and excellent blood compatibility to the erythrocyte.It is foreseeable that N,S-CDs could be further studied as a promising biological imaging agent in vivo.  相似文献   

8.
Quantum dots-hydrogel composites are promising new materials that have attracted extensive attention due to their incomparable biocompatibility and acceptable biodegradability, leading to enormous potential applications for various fields. This review summarizes the recent advances in quantum dots-hydrogel composites with a focus on synthesis methods, including hydrogel gelation in quantum dots(QDs) solution, embedding prepared QDs into hydrogels after gelation, forming QDs in situ within the pr...  相似文献   

9.
Quantum dots-hydrogel composites are promising new materials that have attracted extensive attention due to their incomparable biocompatibility and acceptable biodegradability, leading to enormous potential applications for various fields. This review summarizes the recent advances in quantum dots-hydrogel composites with a focus on synthesis methods, including hydrogel gelation in quantum dots(QDs) solution, embedding prepared QDs into hydrogels after gelation, forming QDs in situ within the pr...  相似文献   

10.
The 2 D nanomaterials have achieved the superlubrication property whatever in solid or liquid lubrication in recent years.However,whether or not the nanosheets can stably disperse in oils and smoothly enter into the asperity of friction pairs is crucial for exerting the function of antifriction.The structure of 2 D QDs is desirable for addressing these issues due to its smaller 3 D size.In this study,we developed a facile preparation process for WS2 QDs with uniform 2 nm size from nanosheets via hydrothermal-assisted grinding approach.The structure of the as-obtained WS2 QDs was determined by a series of characterizations.The results showed that the as-obtained WS2 QDs exhibited the typical spectrum features of nanosized quantum dot.The results of the tribological performance in grease verified that the average friction coefficient(ACOFs) and wear volume(AWVs) were decreased by 7.89% and 63.90%relative to grease,respectively,exhibiting a preferable friction reducing and wear resistance.  相似文献   

11.
Heteroatom doped carbon dots(CDs) with distinct merits are of great attractions in various fields such as solar cells, catalysis, trace element detection and photothermal therapy. In this work, we successfully synthesized blue-fluorescence and photostability manganese-doped carbon dots(Mn-CDs) with a quantum yield up to 7.5%, which was prepared by a facile one-step hydrothermal method with sodium citrate and manganese chloride. The Mn-CDs is the high mono-dispersity, uniform spherical nanoparticles. The Mn element plays a critical role in achieving a high quantum yield in synthesis of carbon dots, which was confirmed by the structure analysis using XPS and FTIR. Spectroscopic investigations proved that the decent PLQY and luminescence properties of Mn-CDs are due to the heteroatom doped, oxidized carbon-based surface passivation. In addition, the Mn-CDs are demonstrated as promising fluorescent sensors for iron ions with a linear range of 0–500 mmol/L and a detection limit of2.1 nmol/L(turn-off), indicating their great potential as a fluorescent probe for chemical sensing.  相似文献   

12.
A simple one-bath strategy has been developed to synthesize a novel CdTe@SiO2@MIP(molecularly imprinted and silica-functionalized CdTe quantum dots,MISFQDs),in which a silica shell was coated on the surface of CdTe quantum dots (CdTe@SiO2 QDs) and then a polymer for selective recognition of 4-chlorophenol(4-CP) was constructed on the surface of CdTe@SiO2 QDs using mercaptoacetic acid as stabilizer,3-aminopropyl-trimethoxysilane(APTES) as functional monomers and tetraethoxysilane(TEOS) as crosslink agent.The structures of CdTe@SiO2@MIP were analyzed by ultraviolet-visible absorption. Fluorescence,FT-IR spectrum and powder X-ray diffraction.The application and characterization of the CdTe@SiO2@MIP were investigated by experiments.All results indicated that the CdTe@SiO2@MIP can selectively recognize 4-chlorophenol.  相似文献   

13.
A novel bovine serum albumin(BSA) imprinted Mn-doped ZnS quantum dots(Mn:ZnS QDs) is firstly reported.The molecular imprinted polymer(MIP) functionalized Mn:ZnS QDs(Mn:ZnS@SiO2@MIP) include the preparation of Mn:ZnS QDs,the coating of silica on the surface of Mn:ZnS QDs,and the functional polymerization by sol-gel reaction using 3-aminophenylboronic acid as the functional and cross-linking monomer in the presence of BSA(Mn:ZnS@SiO2@MIP-BSA),and then the elution of the imprinted BSA on the surface of Mn:ZnS@SiO2 QDs.The results showed that the phosphorescence of Mn:ZnS@SiO2@MIP is stronger quenched by BSA than that of non-imprinted one(Mn:ZnS@SiO2@NIP),indicating that the selectivity of the imprinted Mn:ZnS quantum dots toward BSA is superior to that of non-imprinted one.  相似文献   

14.
Semiconductor quantum dots (QDs) present considerable advantages over bulk single-crystal semiconductors1. As a result of quantum confinement, they have unique optical and electronic properties such as broad excitation spectra, narrow, symmetric and tunable emission spectra2. In addition, QDs exhibit high photobleaching threshold and excellent photostability. They are starting to attract considerable attention as novel fluorescence probes in recent years3-6. Recently, Chen and Rosenzwei…  相似文献   

15.
<正>Parkinson's disease(PD) is a common neurodegenerative disorder whose primary pathology features are the degeneration of dopaminergic neurons in the substantia nigra pars compacta(SNc) and the presence of eosinophilic inclusions called Lewy body in the cytoplasm of the remained neurons.Growing evidence suggests that dysfunction of the ubiquitin-proteasome system(UPS) is involved in the etiopathogenesis of PD.In order to investigate the pathogenetic mechanism of ubiquitin-proteasome dysfunction in PD,2D-differential gel electrophoresis (2D-DIGE) and MALDI-TOF Pro MS were used to determine the proteins,which were differentially expressed,in PC12 cells that had undergone a synthetic proteasomal inhibitor PSI(10μmol/L) treatment for 24 h.Forty-six protein spots were differentially expressed in response to PSI administration,of which 34 were increased and 12 decreased. Six of these were identified as molecular charperones:endoplasmin precursor(GRP94),heat shock protein 105(HSP105),HSC-70-psl,glucose ruglated protein 75(GRP75),glucose ruglated protein 58(GRP58) and heat shock 27000 protein 1(HSP27).The results suggest that the molecular chaperones play an important role in the PD model induced by proteasomal inhibitor.  相似文献   

16.
Compared with other transition metal Mxene derived quantum dots(MQDS),Ta-based Mxene quantum dots have good functionality,but Ta-based Mxene quantum dots and their applications have not been studied so far.In this paper,we report for the first time the synthesis of high fluorescence quantum yield(QY) N-doped Ta4 C3 quantum dots(N-MQDs) using Ta4 C3 quantum dots in acid reflux damaged Ta4 C3 nanosheets as precursors and ...  相似文献   

17.
Multiple exciton generation(MEG) dynamics in colloidal PbS quantum dots(QDs) characterized with an improved transient grating(TG) technique will be reported. Only one peak soon after optical absorption and a fast decay within 1 ps can be observed in the TG kinetics when the photon energy of the pump light hν is smaller than 2.7Eg(Eg: band gap between LUMO and HOMO in the QDs), which corresponds to hot carrier cooling. When hν is greater than 2.7Eg, however, after the initial peak, the TG signal decreases first and soon increases, and then a new peak appears at about 2 to 3 ps. The initial peak and the new peak correspond to hot carriers at the higher excited state and MEG at the lowest excited state, respectively. By proposing a theoretical model, we can calculate the hot carrier cooling time constant and MEG occurrence time constant quantitatively. When MEG does not happen for hν smaller than 2.7Eg, hot carrier cools with a time constant of 400 fs. When MEG occurs for hν larger than 2.7Eg, hot carrier cools with a time constant as small as 200 fs, while MEG occurs with a time constant of 600 fs. The detailed hot carrier cooling and MEG occurrence dynamics characterized in this work would shed light on the further understanding of MEG mechanism of various type of semiconductor QDs.  相似文献   

18.
In this work,molybdenum disulfide quantum dots(MoS_2 QDs) were firstly prepared by hydrothermal method using sodium molybdate and glutathione as precursors,and applied in ascorbic acid detection.When joining MnO_2 nanosheets into MoS_2 QDs solution,they produced an obvious fluorescence quenching,which should be due to inner filter effect(IFE).Meanwhile,the fluorescent probe was formed,Interestingly,we found that this quenching phenomenon disappeared with the addition of ascorbic acid,In other words,the fluorescence gradually restored.This recovery phenomenon is mainly due to the reduction effect of ascorbic acid for MnO_2 nanosheets.Under the optimum conditions,the limit of detection(LOD) of 39 nmol/L for ascorbic acid was achieved with a linear range of 0.33-5.00 μmol/L.The repeatability was better than 5.0% for ascorbic acid in both standard and fruit samples(n = 3).Moreover,the as-fabricated fluorescent sensing system was successfully employed to detect the ascorbic acid levels in hawthorn and jujube with satisfactory results.  相似文献   

19.
Sodium titanate nanotubes have been prepared and modified chemically with CdSe quantum dots (QDs) using bifunctional modifiers (HS-COOH). Their photovoltaic characteristics have also been studied. The results indicate that the surface photovoltage response of nanotubes extends to the visible light region, and the intensity of surface photovoltage is enhanced after modification with CdSe QDs. The field-induced surface photovoltage spectroscopy (FISPS) shows that sodium titanate nanotubes have different photovoltaic response before and after modification. That is, the surface photovoltaic re-sponse of pure sodium titanate nanotubes increases with the enhancement of positive applied bias and decreases with the enhancement of negative applied bias. Meanwhile, the surface photovoltaic re-sponse of CdSe modified sodium titanate nanotubes is different from that of the pure sodium titanate nanotubes. The whole spectrum increases with the enhancement of applied bias at the first stage. However, when the applied bias reaches a certain value, the surface photovoltage response keeps in-creasing in some spectrum regions, while decreasing in other spectrum regions. This novel phe-nomenon is explained by using an electric field induced dipole model.  相似文献   

20.
Tumor necrosis factor-alpha(TNF-α) is a type of critical pro-inflammatory cytokines,which participates in numerous cellular signal pathways and is regarded as a critical protein biomarker for inflammatory based diseases.In this contribution,we have developed a strategy to fabricate multiple DNA star trigon structures with fluorescence signals from four hairpin probes which are detonated by a single molecule of TNF-α.This process causes significant enhancement of fluorescence and a sensitive and selective biosensor for TNF-α assay is constructed.This method is able to achieve the limit of detection(LOD) at 5 pg/mL(0.285 pM).Moreover,some other advantages such as fast response,high selectivity and convenient operation promise the potential use of this method for TNF-α measurement in point of care testing application.Upon further development,this strategy can also be converted to detect other analytes such as small molecules,nucleic acids and other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号