首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Denote by 0 = λ 0 < λ 1 ≤ λ 2 ≤ . . . the infinite sequence given by the values of a positive definite irrational quadratic form in k variables at integer points. For l ≥ 2 and an (l ?1)-dimensional interval I = I 2×. . .×I l we consider the l-level correlation function \({K^{(l)}_I(R)}\) which counts the number of tuples (i 1, . . . , i l ) such that \({\lambda_{i_1},\ldots,\lambda_{i_l}\leq R^2}\) and \({\lambda_{i_{j}}-\lambda_{i_{1}}\in I_j}\) for 2 ≤ j ≤ l. We study the asymptotic behavior of \({K^{(l)}_I(R)}\) as R tends to infinity. If k ≥ 4 we prove \({K^{(l)}_I(R)\sim c_l(Q)\,{\rm vol}(I)R^{lk-2(l-1)}}\) for arbitrary l, where c l (Q) is an explicitly determined constant. This remains true for k = 3 under the restriction l ≤ 3.  相似文献   

2.
Let R be a prime ring with extended centroid F and let δ be an F-algebraic continuous derivation of R with the associated inner derivation ad(b). Factorize the minimal polynomial μ(λ) of b over F into distinct irreducible factors m(l)=?ipi(l)ni{\mu(\lambda)=\prod_i\pi_i(\lambda)^{n_i}} . Set ℓ to be the maximum of n i . Let R(d)=def.{x ? R | d(x)=0}{R^{(\delta)}{\mathop{=}\limits^{{\rm def.}}}\{x\in R\mid \delta(x)=0\}} be the subring of constants of δ on R. Denote the prime radical of a ring A by P(A){{\mathcal{P}}(A)} . It is shown among other things that
P(R(d))2l-1=0   \textand   P(R(d))=R(d)?P(CR(b)){\mathcal{P}}(R^{(\delta)})^{2^\ell-1}=0\quad\text{and}\quad{\mathcal{P}}(R^{(\delta)})=R^{(\delta)}\cap {\mathcal{P}}(C_R(b))  相似文献   

3.
Anr-graph is a graph whose basic elements are its vertices and r-tuples. It is proved that to everyl andr there is anε(l, r) so that forn>n 0 everyr-graph ofn vertices andn r−ε(l, r) r-tuples containsr. l verticesx (j), 1≦jr, 1≦il, so that all ther-tuples occur in ther-graph.  相似文献   

4.
For log\frac1+?52 £ l* £ l* < ¥{\rm log}\frac{1+\sqrt{5}}{2}\leq \lambda_\ast \leq \lambda^\ast < \infty , let E*, λ*) be the set {x ? [0,1): liminfn ? ¥\fraclogqn(x)n=l*, limsupn ? ¥\fraclogqn(x)n=l*}. \left\{x\in [0,1):\ \mathop{\lim\inf}_{n \rightarrow \infty}\frac{\log q_n(x)}{n}=\lambda_{\ast}, \mathop{\lim\sup}_{n \rightarrow \infty}\frac{\log q_n(x)}{n}=\lambda^{\ast}\right\}. It has been proved in [1] and [3] that E*, λ*) is an uncountable set. In the present paper, we strengthen this result by showing that dimE(l*, l*) 3 \fracl* -log\frac1+?522l*\dim E(\lambda_{\ast}, \lambda^{\ast}) \ge \frac{\lambda_{\ast} -\log \frac{1+\sqrt{5}}{2}}{2\lambda^{\ast}}  相似文献   

5.
We study necessary and sufficient conditions for embeddings of Besov and Triebel-Lizorkin spaces of generalized smoothness B(n/p,Y)p,q(\mathbbRn)B^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}) and F(n/p,Y)p,q(\mathbbRn)F^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}), respectively, into generalized H?lder spaces L¥,rm(·)( \mathbb Rn)\Lambda_{\infty,r}^{\mu(\cdot)}(\ensuremath {\ensuremath {\mathbb {R}}^{n}}). In particular, we are able to characterize optimal embeddings for this class of spaces provided q>1. These results improve the embedding assertions given by the continuity envelopes of B(n/p,Y)p,q(\mathbbRn)B^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}) and F(n/p,Y)p,q(\mathbbRn)F^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}), which were obtained recently solving an open problem of D.D. Haroske in the classical setting.  相似文献   

6.
We describe an algorithm for large-scale discrete ill-posed problems, called GKB-FP, which combines the Golub-Kahan bidiagonalization algorithm with Tikhonov regularization in the generated Krylov subspace, with the regularization parameter for the projected problem being chosen by the fixed-point method by Bazán (Inverse Probl. 24(3), 2008). The fixed-point method selects as regularization parameter a fixed-point of the function ‖r λ 2/‖f λ 2, where f λ is the regularized solution and r λ is the corresponding residual. GKB-FP determines the sought fixed-point by computing a finite sequence of fixed-points of functions ||rl(k)||2/||fl(k)||2\|r_{\lambda}^{(k)}\|_{2}/\|f_{\lambda}^{(k)}\|_{2}, where fl(k)f_{\lambda}^{(k)} approximates f λ in a k-dimensional Krylov subspace and rl(k)r_{\lambda}^{(k)} is the corresponding residual. Based on this and provided the sought fixed-point is reached, we prove that the regularized solutions fl(k)f_{\lambda}^{(k)} remain unchanged and therefore completely insensitive to the number of iterations. This and the performance of the method when applied to well-known test problems are illustrated numerically.  相似文献   

7.
We consider the spectral decomposition of A, the generator of a polynomially bounded n-times integrated group whose spectrum set $\sigma(A)=\{i\lambda_{k};k\in\mathbb{\mathbb{Z}}^{*}\}We consider the spectral decomposition of A, the generator of a polynomially bounded n-times integrated group whose spectrum set s(A)={ilk;k ? \mathbb\mathbbZ*}\sigma(A)=\{i\lambda_{k};k\in\mathbb{\mathbb{Z}}^{*}\} is discrete and satisfies ?\frac1|lk|ldkn < ¥\sum \frac{1}{|\lambda_{k}|^{\ell}\delta_{k}^{n}}<\infty , where is a nonnegative integer and dk=min(\frac|lk+1-lk|2,\frac|lk-1-lk|2)\delta _{k}=\min(\frac{|\lambda_{k+1}-\lambda _{k}|}{2},\frac{|\lambda _{k-1}-\lambda _{k}|}{2}) . In this case, Theorem 3, we show by using Gelfand’s Theorem that there exists a family of projectors (Pk)k ? \mathbb\mathbbZ*(P_{k})_{k\in\mathbb{\mathbb{Z}}^{*}} such that, for any xD(A n+ ), the decomposition ∑P k x=x holds.  相似文献   

8.
We show that T is a surjective multiplicative (but not necessarily linear) isometry from the Smirnov class on the open unit disk, the ball, or the polydisk onto itself, if and only if there exists a holomorphic automorphism Φ such that T(f)=f ○ Φ for every class element f or T(f) = [`(f° [`(j)] )]\overline {f^\circ \bar \varphi } for every class element f, where the automorphism Φ is a unitary transformation in the case of the ball and Φ(z 1, ..., z n ) = (l1 zi1 ,...,ln zin )(\lambda _1 z_{i_1 } ,...,\lambda _n z_{i_n } ) for |λ j | = 1, 1 ≤ jn, and (i 1; ..., i n )is some permutation of the integers from 1through n in the case of the n-dimensional polydisk.  相似文献   

9.
Let V be a 2m-dimensional symplectic vector space over an algebraically closed field K. Let $ \mathfrak{B}_n^{(f)} Let V be a 2m-dimensional symplectic vector space over an algebraically closed field K. Let \mathfrakBn(f) \mathfrak{B}_n^{(f)} be the two-sided ideal of the Brauer algebra \mathfrakBn( - 2m ) {\mathfrak{B}_n}\left( { - 2m} \right) over K generated by e 1 e 3⋯ e 2f-1 where 0 ≤ f ≤ [n/2]. Let HTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} be the subspace of partial-harmonic tensors of valence f in V n . In this paper we prove that dimHTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} and dim \textEn\textdK\textSp(V)( V ?n \mathord
/ \vphantom V ?n V ?n V ?n\mathfrakBn(f) ) {\text{En}}{{\text{d}}_{K{\text{Sp}}(V)}}\left( {{{{V^{ \otimes n}}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}} {{V^{ \otimes n}}}}} \right.} {{V^{ \otimes n}}}}\mathfrak{B}_n^{(f)}} \right) are both independent of K, and the natural homomorphism from \mathfrakBn( - 2m ) \mathord/ \vphantom ( - 2m ) \mathfrakBn(f) \mathfrakBn(f) {\mathfrak{B}_n}{{\left( { - 2m} \right)} \mathord{\left/{\vphantom {{\left( { - 2m} \right)} {\mathfrak{B}_n^{(f)}}}} \right.} {\mathfrak{B}_n^{(f)}}} to \textEn\textdK\textSp(V)( V ?n \mathord/ \vphantom V ?n V ?n V ?n\mathfrakBn(f) ) {\text{En}}{{\text{d}}_{K{\text{Sp}}(V)}}\left( {{{{V^{ \otimes n}}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}} {{V^{ \otimes n}}}}} \right.} {{V^{ \otimes n}}}}\mathfrak{B}_n^{(f)}} \right) is always surjective. We show that HTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} has a Weyl filtration and is isomorphic to the dual of V ?n\mathfrakBn(f) \mathord/ \vphantom V ?n\mathfrakBn(f) V V ?n\mathfrakBn( f + 1 ) {{{{V^{ \otimes n}}\mathfrak{B}_n^{(f)}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}\mathfrak{B}_n^{(f)}} V}} \right.} V}^{ \otimes n}}\mathfrak{B}_n^{\left( {f + 1} \right)} as an \textSp(V) - ( \mathfrakBn( - 2m ) \mathord/ \vphantom ( - 2m ) \mathfrakBn( f + 1 ) \mathfrakBn( f + 1 ) ) {\text{Sp}}(V) - \left( {{\mathfrak{B}_n}{{\left( { - 2m} \right)} \mathord{\left/{\vphantom {{\left( { - 2m} \right)} {\mathfrak{B}_n^{\left( {f + 1} \right)}}}} \right.} {\mathfrak{B}_n^{\left( {f + 1} \right)}}}} \right) -bimodule. We obtain an \textSp(V) - \mathfrakBn {\text{Sp}}(V) - {\mathfrak{B}_n} -bimodules filtration of V n such that each successive quotient is isomorphic to some ?( l) ?zg,l\mathfrakBn \nabla \left( \lambda \right) \otimes {z_{g,\lambda }}{\mathfrak{B}_n} with λ ⊢ n 2g, ℓ(λ)≤m and 0 ≤ g ≤ [n/2], where ∇(λ) is the co-Weyl module associated to λ and z g is an explicitly constructed maximal vector of weight λ. As a byproduct, we show that each right \mathfrakBn {\mathfrak{B}_n} -module zg,l\mathfrakBn {z_{g,\lambda }}{\mathfrak{B}_n} is integrally defined and stable under base change.  相似文献   

10.
Let Lf(x)=-\frac1w?i,j ?i(ai,j(·)?jf)(x)+V(x)f(x){\mathcal{L}f(x)=-\frac{1}{\omega}\sum_{i,j} \partial_i(a_{i,j}(\cdot)\partial_jf)(x)+V(x)f(x)} with the non-negative potential V belonging to reverse H?lder class with respect to the measure ω(x)dx, where ω(x) satisfies the A 2 condition of Muckenhoupt and a i,j (x) is a real symmetric matrix satisfying l-1w(x)|x|2 £ ?ni,j=1ai,j(x)xixj £ lw(x)|x|2.{\lambda^{-1}\omega(x)|\xi|^2\le \sum^n_{i,j=1}a_{i,j}(x)\xi_i\xi_j\le\lambda\omega(x)|\xi|^2. } We obtain some estimates for VaL-a{V^{\alpha}\mathcal{L}^{-\alpha}} on the weighted L p spaces and we study the weighted L p boundedness of the commutator [b, Va L-a]{[b, V^{\alpha} \mathcal{L}^{-\alpha}]} when b ? BMOw{b\in BMO_\omega} and 0 < α ≤ 1.  相似文献   

11.
In the case where a 2π-periodic function f is twice continuously differentiable on the real axis ℝ and changes its monotonicity at different fixed points y i ∈ [− π, π), i = 1,…, 2s, s ∈ ℕ (i.e., on ℝ, there exists a set Y := {y i } i∈ℤ of points y i = y i+2s + 2π such that the function f does not decrease on [y i , y i−1] if i is odd and does not increase if i is even), for any natural k and n, nN(Y, k) = const, we construct a trigonometric polynomial T n of order ≤n that changes its monotonicity at the same points y i Y as f and is such that
*20c || f - Tn || £ \fracc( k,s )n2\upomega k( f",1 \mathord\vphantom 1 n n ) ( || f - Tn || £ \fracc( r + k,s )nr\upomega k( f(r),1 \mathord/ \vphantom 1 n n ),    f ? C(r),    r 3 2 ), \begin{array}{*{20}{c}} {\left\| {f - {T_n}} \right\| \leq \frac{{c\left( {k,s} \right)}}{{{n^2}}}{{{\upomega }}_k}\left( {f',{1 \mathord{\left/{\vphantom {1 n}} \right.} n}} \right)} \\ {\left( {\left\| {f - {T_n}} \right\| \leq \frac{{c\left( {r + k,s} \right)}}{{{n^r}}}{{{\upomega }}_k}\left( {{f^{(r)}},{1 \mathord{\left/{\vphantom {1 n}} \right.} n}} \right),\quad f \in {C^{(r)}},\quad r \geq 2} \right),} \\ \end{array}  相似文献   

12.
Let Ω be a domain in ${\mathbb{C}^{2}}Let Ω be a domain in \mathbbC2{\mathbb{C}^{2}}, and let p: [(W)\tilde]? \mathbbC2{\pi: \tilde{\Omega}\rightarrow \mathbb{C}^{2}} be its envelope of holomorphy. Also let W¢=p([(W)\tilde]){\Omega'=\pi(\tilde{\Omega})} with i: W\hookrightarrow W¢{i: \Omega \hookrightarrow \Omega'} the inclusion. We prove the following: if the induced map on fundamental groups i*:p1(W) ? p1(W¢){i_{*}:\pi_{1}(\Omega) \rightarrow \pi_{1}(\Omega')} is a surjection, and if π is a covering map, then Ω has a schlicht envelope of holomorphy. We then relate this to earlier work of Fornaess and Zame.  相似文献   

13.
Let W í \Bbb C\Omega \subseteq {\Bbb C} be a simply connected domain in \Bbb C{\Bbb C} , such that {¥} è[ \Bbb C \[`(W)]]\{\infty\} \cup [ {\Bbb C} \setminus \bar{\Omega}] is connected. If g is holomorphic in Ω and every derivative of g extends continuously on [`(W)]\bar{\Omega} , then we write gA (Ω). For gA (Ω) and z ? [`(W)]\zeta \in \bar{\Omega} we denote SN (g,z)(z) = ?Nl=0\fracg(l) (z)l ! (z-z)lS_N (g,\zeta )(z)= \sum^{N}_{l=0}\frac{g^{(l)} (\zeta )}{l !} (z-\zeta )^l . We prove the existence of a function fA(Ω), such that the following hold:
i)  There exists a strictly increasing sequence μn ∈ {0, 1, 2, …}, n = 1, 2, …, such that, for every pair of compact sets Γ, Δ ⊂ [`(W)]\bar{\Omega} and every l ∈ {0, 1, 2, …} we have supz ? G supw ? D \frac?l?wl Smnf,z) (w)-f(l)(w) ? 0,    as n ? + ¥    and\sup_{\zeta \in \Gamma} \sup_{w \in \Delta} \frac{\partial^l}{\partial w^l} S_{\mu_ n} (\,f,\zeta) (w)-f^{(l)}(w) \rightarrow 0, \hskip 7.8pt {\rm as}\,n \rightarrow + \infty \quad {\rm and}
ii)  For every compact set K ì \Bbb CK \subset {\Bbb C} with K?[`(W)] = ?K\cap \bar{\Omega} =\emptyset and Kc connected and every function h: K? \Bbb Ch: K\rightarrow {\Bbb C} continuous on K and holomorphic in K0, there exists a subsequence { m¢n }n=1\{ \mu^\prime _n \}^{\infty}_{n=1} of {mn }n=1\{\mu_n \}^{\infty}_{n=1} , such that, for every compact set L ì [`(W)]L \subset \bar{\Omega} we have supz ? L supz ? K Sm¢nf,z)(z)-h(z) ? 0,    as  n? + ¥.\sup_{\zeta \in L} \sup_{z\in K} S_{\mu^\prime _n} (\,f,\zeta )(z)-h(z) \rightarrow 0, \hskip 7.8pt {\rm as} \, n\rightarrow + \infty .
  相似文献   

14.
Let ${(R, \mathfrak{m})}Let (R, \mathfrakm){(R, \mathfrak{m})} denote a local ring. Let I ì R{I \subset R} be an ideal with c =  grade I. Let D(·) denote the Matlis duality functor. In recent research there is an interest in the structure of the local cohomology module HcI : = HcI(R){H^c_I := H^c_I(R)}, in particular in the endomorphism ring of D(HcI){D(H^c_I)}. Let E R (k) be the injective hull of the residue field R/\mathfrakm{R/\mathfrak{m}}. By investigating the natural map HcI ?D(HcI) ? ER(k){H^c_I \otimes D(H^c_I) \to E_R(k)} we are able to prove that the endomorphism rings of D(HcI){D(H^c_I)} and of HcI{H^c_I} are naturally isomorphic. This natural homomorphism is related to a quasi-isomorphism of a certain complex. As applications we show results when the endomorphism ring of D(HcI){D(H^c_I)} is naturally isomorphic to R generalizing results known under the additional assumption of HiI(R) = 0{H^i_I(R) = 0} for i 1 c{i \not= c}.  相似文献   

15.
Block Toeplitz and Hankel matrices arise in many aspects of applications. In this paper, we will research the distributions of eigenvalues for some models and get the semicircle law. Firstly we will give trace formulas of block Toeplitz and Hankel matrix. Then we will prove that the almost sure limit gT(m)\gamma_{T}^{(m)} (gH(m))(\gamma_{H}^{(m)}) of eigenvalue distributions of random block Toeplitz (Hankel) matrices exist and give the moments of the limit distributions where m is the order of the blocks. Then we will prove the existence of almost sure limit of eigenvalue distributions of random block Toeplitz and Hankel band matrices and give the moments of the limit distributions. Finally we will prove that gT(m)\gamma_{T}^{(m)} (gH(m))(\gamma_{H}^{(m)}) converges weakly to the semicircle law as m→∞.  相似文献   

16.
17.
We study hypersurfaces in the Lorentz-Minkowski space \mathbbLn+1{\mathbb{L}^{n+1}} whose position vector ψ satisfies the condition L k ψ = + b, where L k is the linearized operator of the (k + 1)th mean curvature of the hypersurface for a fixed k = 0, . . . , n − 1, A ? \mathbbR(n+1)×(n+1){A\in\mathbb{R}^{(n+1)\times(n+1)}} is a constant matrix and b ? \mathbbLn+1{b\in\mathbb{L}^{n+1}} is a constant vector. For every k, we prove that the only hypersurfaces satisfying that condition are hypersurfaces with zero (k + 1)th mean curvature, open pieces of totally umbilical hypersurfaces \mathbbSn1(r){\mathbb{S}^n_1(r)} or \mathbbHn(-r){\mathbb{H}^n(-r)}, and open pieces of generalized cylinders \mathbbSm1(r)×\mathbbRn-m{\mathbb{S}^m_1(r)\times\mathbb{R}^{n-m}}, \mathbbHm(-r)×\mathbbRn-m{\mathbb{H}^m(-r)\times\mathbb{R}^{n-m}}, with k + 1 ≤ m ≤ n − 1, or \mathbbLm×\mathbbSn-m(r){\mathbb{L}^m\times\mathbb{S}^{n-m}(r)}, with k + 1 ≤ nm ≤ n − 1. This completely extends to the Lorentz-Minkowski space a previous classification for hypersurfaces in \mathbbRn+1{\mathbb{R}^{n+1}} given by Alías and Gürbüz (Geom. Dedicata 121:113–127, 2006).  相似文献   

18.
In [C.K. Chui and X.L. Shi, Inequalities of Littlewood-Paley type for frames and wavelets, SIAM J. Math. Anal., 24 (1993), 263–277], the authors proved that if {eimbxg(x-na): m,n ? \Bbb Z}\{e^{imbx}g(x-na): m,n\in{\Bbb Z}\} is a Gabor frame for L2(\Bbb R)L^2({\Bbb R}) with frame bounds A and B, then the following two inequalities hold: A £ \frac2pb?n ? \Bbb Z|g(x-na)|2B,     a.e.A\le \frac{2\pi}{b}\sum_{n\in{\Bbb Z}}\vert g(x-na)\vert^2\le B, \quad a.e. and A £ \frac1a?m ? \Bbb Z|[^(g)](w-mb)|2B,     a.e.A\le \frac{1}{a}\sum_{m\in{\Bbb Z}}\vert \hat{g}(\omega-mb)\vert^2\le B, \quad a.e. . In this paper, we show that similar inequalities hold for multi-generated irregular Gabor frames of the form è1 £ kr{eiáx, l?gk(x-m): m ? Dk, l ? Lk }\bigcup_{1\le k\le r}\{e^{i\langle x, \lambda\rangle}g_{k}(x-\mu):\, \mu\in \Delta_k, \lambda\in\Lambda_k \} , where Δ k and Λ k are arbitrary sequences of points in \Bbb Rd{\Bbb R}^d and gk ? L2(\Bbb Rd)g_k\in{L^2{(\Bbb R}^d)} , 1 ≤ kr.  相似文献   

19.
Let R be a noetherian ring, \mathfraka{\mathfrak{a}} an ideal of R, and M an R-module. We prove that for a finite module M, if Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is minimax for all i ≥ r ≥ 1, then Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is artinian for i ≥ r. A local–global principle for minimax local cohomology modules is shown. If Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is coatomic for i ≤ r (M finite) then Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is finite for i ≤ r. We give conditions for a module which is locally minimax to be a minimax module. A non-vanishing theorem and some vanishing theorems are proved for local cohomology modules.  相似文献   

20.
Let (g, K)(k) be a CMC (vacuum) Einstein flow over a compact three-manifold Σ with non-positive Yamabe invariant (Y(Σ)). As noted by Fischer and Moncrief, the reduced volume ${\mathcal{V}(k)=\left(\frac{-k}{3}\right)^{3}{\rm Vol}_{g(k)}(\Sigma)}Let (g, K)(k) be a CMC (vacuum) Einstein flow over a compact three-manifold Σ with non-positive Yamabe invariant (Y(Σ)). As noted by Fischer and Moncrief, the reduced volume V(k)=(\frac-k3)3Volg(k)(S){\mathcal{V}(k)=\left(\frac{-k}{3}\right)^{3}{\rm Vol}_{g(k)}(\Sigma)} is monotonically decreasing in the expanding direction and bounded below by Vinf=(\frac-16Y(S))\frac32{\mathcal{V}_{\rm \inf}=\left(\frac{-1}{6}Y(\Sigma)\right)^{\frac{3}{2}}}. Inspired by this fact we define the ground state of the manifold Σ as “the limit” of any sequence of CMC states {(g i , K i )} satisfying: (i) k i  = −3, (ii) Viˉ Vinf{\mathcal{V}_{i}\downarrow \mathcal{V}_{\rm inf}}, (iii) Q 0((g i , K i )) ≤ Λ, where Q 0 is the Bel–Robinson energy and Λ is any arbitrary positive constant. We prove that (as a geometric state) the ground state is equivalent to the Thurston geometrization of Σ. Ground states classify naturally into three types. We provide examples for each class, including a new ground state (the Double Cusp) that we analyze in detail. Finally, consider a long time and cosmologically normalized flow ([(g)\tilde],[(K)\tilde])(s)=((\frac-k3)2g,(\frac-k3)K){(\tilde{g},\tilde{K})(\sigma)=\left(\left(\frac{-k}{3}\right)^{2}g,\left(\frac{-k}{3}\right)K\right)}, where s = -ln(-k) ? [a,¥){\sigma=-\ln (-k)\in [a,\infty)}. We prove that if [(E1)\tilde]=E1(([(g)\tilde],[(K)\tilde])) £ L{\tilde{\mathcal{E}_{1}}=\mathcal{E}_{1}((\tilde{g},\tilde{K}))\leq \Lambda} (where E1=Q0+Q1{\mathcal{E}_{1}=Q_{0}+Q_{1}}, is the sum of the zero and first order Bel–Robinson energies) the flow ([(g)\tilde],[(K)\tilde])(s){(\tilde{g},\tilde{K})(\sigma)} persistently geometrizes the three-manifold Σ and the geometrization is the ground state if Vˉ Vinf{\mathcal{V}\downarrow \mathcal{V}_{\rm inf}}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号