首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work investigates the process of incorporation of a glycosylphosphatidyl inositol (GPI)-anchored alkaline phosphatase into Langmuir monolayers of dimyristoyl phosphatidic acid (DMPA). Three different methods of protein incorporation were assayed. When the protein solution was injected below the air–water interface after formation of the lipid monolayer a micro-heterogeneous distribution of alkaline phosphatase throughout the interface was observed. Adsorption kinetics studied by fluorescence microscopy, associated with surface pressure measurements, led to the proposition of a model in which the protein penetration is modulated by the surface packing of the monolayer and intermolecular interactions occurring between the phospholipid and the protein. At initial surface pressures higher than 20 mN m−1, the protein is quickly adsorbed on the interface and the lateral diffusion drives the alkyl chains to turn towards the air phase while the polypeptide moiety faces the aqueous subphase.  相似文献   

2.
The catalytic activity of a glycosylphosphatidylinositol (GPI)-anchored alkaline phosphatase has been studied in Langmuir phospholipid monolayers at different surface pressures. The enzyme substrate, p-nitrophenyl phosphate, was injected into the subphase of mixed enzyme/lipid Langmuir monolayers. Its hydrolysis product was followed by monitoring the absorbance at 410 nm in situ in the monolayer subphase of the Langmuir trough. Several surface pressures, corresponding to different molecular surface densities, were attained by lateral compression of the monolayers. The morphology of the monolayers, observed by fluorescence microscopy, showed three different types of domains owing to the heterogeneous partition of the enzyme within the mixed enzyme/lipid film. The catalytic activity was modulated by the enzyme surface density, and it increased until a pressure of 18 mN/m was reached, but it decreased significantly when the equilibrium in-plane elasticity (surface compressional modulus) increased more noticeably, resulting in alterations in the interface morphology. A model for the modulation of the enzyme orientation and catalytic activity by lipid/enzyme surface morphology and enzyme surface packing at the air/liquid interface is proposed. The results might have an important impact on the comprehension of the enzymatic activity regulation of GPI-anchored proteins in biomembranes.  相似文献   

3.
The kinetics and the thermodynamics of melanin concentrating hormone (MCH) adsorption, penetration, and mixing with membrane components are reported. MCH behaved as a surface active peptide, forming stable monolayers at a lipid-free air-water interface, with an equilibrium spreading pressure, a collapse pressure, and a minimal molecular area of 11 mN/m, 13 mN/m, and 140 A (2), respectively. Additional peptide interfacial stabilization was achieved in the presence of lipids, as evidenced by the expansion observed at pi > pi sp in monolayers containing premixtures of MCH with zwitterionic or charged lipids. The MCH-monolayer association and dissociation rate constants were 9.52 x 10 (-4) microM (-1) min (-1) and 8.83 x 10 (-4) min (-1), respectively. The binding of MCH to the dpPC-water interface had a K d = 930 nM at 10 mN/m. MCH penetration in lipid monolayers occurred even up to pi cutoff = 29-32 mN/m. The interaction stability, binding orientation, and miscibility of MCH in monolayers depended on the lipid type, the MCH molar fraction in the mixture, and the molecular packing of the monolayer. This predicted its heterogeneous distribution between different self-separated membrane domains. Our results demonstrated the ability of MCH to incorporate itself into biomembranes and supports the possibility that MCH affects the activity of mechanosensitive membrane proteins through mechanisms unrelated with binding to specific receptors.  相似文献   

4.
A glycosylphosphatidylinositol (GPI)-anchored enzyme (rat osseous plate alkaline phosphatase-OAP) was studied as monolayer (pure and mixed with lipids) at the air-water interface. Surface pressure and surface potential-area isotherms showed that the enzyme forms a stable monolayer and exhibits a liquid-expanded state even at surface pressure as high as 30 mN m(-1). Isotherms for mixed dimyristoylphosphatidic acid (DMPA)-OAP monolayer showed the absence of a liquid-expanded/liquid-condensed phase transition as observed for pure DMPA monolayer. In both cases, pure or mixed monolayer, the enzyme preserves its native conformation under compression at the air-water interface as observed from in situ p-polarized light Fourier transform-infrared reflection-absorption spectroscopic (FT-IRRAS) measurements. Changes in orientation and conformation of the enzyme due to the presence or absence of DMPA, as well as due to the surface compression, are discussed.  相似文献   

5.
Stearic acid (SA) and octadecylamine (ODA) monolayers at the air/liquid interface were used as template layers to adsorb glucose oxidase (GOx) from aqueous solution. The effect of the template monolayers on the adsorption behavior of GOx was studied in terms of the variation of surface pressure, the evolution of surface morphology observed by BAM and AFM, and the conformation of adsorbed GOx. The results show that the presence of a template monolayer can enhance the adsorption rate of GOx; furthermore, ODA has a higher ability, compared to SA, to adsorb GOx, which is attributed to the electrostatic attractive interaction between ODA and GOx. For adsorption performed on a bare surface or on an SA monolayer, the surface pressure approaches an equilibrium value (ca. 8 mN/m) after 2 to 3 h of adsorption and remains nearly constant in the following adsorption process. For the adsorption on an ODA monolayer, the surface pressure will increase further 1 to 2 h after approaching the first equilibrium pressure, which is termed the second adsorption stage. The measurement of circular dichroism (CD) spectroscopy indicates that the Langmuir-Blodgett films of adsorbed GOx transferred at the first equilibrium state (π = 8 mN/m) have mainly a β-sheet conformation, which is independent of the type of template monolayers. However, the ODA/GOx LB film transferred at the second adsorption stage has mainly an α-helix conformation. It is concluded that the specific interaction between ODA and GOx not only leads to a higher adsorption rate and adsorbed amount of GOx but also induces a conformation change in adsorbed GOx from β-sheet to α-helix. The present results indicate that is possible to control the conformation of adsorbed protein by selecting the appropriate template monolayer.  相似文献   

6.
The interfacial behaviour of Cratylia mollis (Cra) at the air/water interface and its penetrant ability into spread phospholipid monolayers (Lipoid E80 and Epicuron 200) has been monitored by surface tension measurements. The first-order rate constants defining adsorption and rearrangement obtained from surface tension kinetics data reveal that Cra is a rather stable protein which exhibits characteristic protein adsorption patterns in which the breaking points separating diffusion–penetration and rearrangement profiles could have been easily distinguished. The penetration of Cra into Lipoid E80 and Epicuron 200 phospholipid monolayers has been inferred in terms of penetration pressure increments (ΔΠ) versus time relationships. The data clearly showed that penetrant ability of the lectin was, to a large extent, dependent on monolayer compressibilities. Thus, for Lipoid E80, which contained a rather high percentage of phosphatidylethanolamine (DPPE) in the mixture with phosphatidylcholine (DPPC), penetration of Cra at the high monolayer compression (20 mN m−1) was lower than that observed for Epicuron 200, which did not contain DPPE. Indeed, in the middle of the Π-A isotherm, DPPE was markedly less compressible than DPPC. However, at the low monolayer surface coverage (3 mN m−1), the rates of Cra penetration into both Lipoid E80 and Epicuron 200, although much higher for the latter at the beginning of adsorption, yielded similar limiting values of ΔΠ. This has been attributed to the occurrence of a hydrophobic interaction between the lectin and hydrophobic phospholipid chains that have the same length for both Lipoid E80 and Epicuron 200.  相似文献   

7.
To obtain information on the interactions between CETP and HDL3 lipoproteins, we have studied (by surface tension measurements) the adsorption of the CETP at the air–water interface and at the interface between the water and monolayers formed by spreading of lipids extracted from HDL3. We have compared the interfacial behavior of CETP and ApoA-1 (the constitutive protein of HDL3); and the influence of monolayers composition and pressure on the kinetics of the CETP adsorption. The results obtained show that CETP was more expanded than the ApoA-1 which adsorbed more strongly at the air–water interface. CETP adsorbs more and quickly at the lipid interface that at the air–interface, specially for 20% fraction of cholesterol in the monolayer. Our results show that the adsorption of the CETP at the HDL3 surface lipids are strongly dependent of the composition of the monolayer and that the exclusion pressure of CETP varied from 31 to 33.7 mN m−1 with the addition of cholesterol. Finally, the kinetics of the adsorption at water–lipid interface exhibited two steps (quick increase followed by slow decrease of the excess surface pressure) which should indicate a penetration into monolayer followed by a partial desorption of phospholipids with or without cholesterol corresponding to a proteolipid association.  相似文献   

8.
The present note describes the use of surface pressure measurements (Langmuir monolayer technique) for the analysis of interactions of two different anthracyclines (adriamycin and daunorubicin) with a non-ionic, zwitterionic phospholipid monolayer, at the air-water interface. Because the surface membrane of the cell is the first barrier encountered by the anthracyclines in the treatment of cancer, drug-membrane interactions studied in model (monolayers or bilayers) and natural systems play an important role in the understanding of the bioactivity properties of these molecules. We report here the rate constants of the adsorption process of adriamycin and daunorubicin in the presence of a zwitterionic phospholipid monolayer at the air-water interface. Because interactions with the lipid monolayer strongly depend on the molecular packing of the lipid, we investigated this process at a relatively low surface pressure (7 mN/m), the interactions being favoured by the gaseous and liquid expanded structure of the lipid monolayer. The apparent molecular area of these molecules during the insertion into the lipid film and their interactions with the phospholipid polar head groups was evaluated and the estimated percentage of anthracyclines at the interface after adsorption into the lipid monolayer is briefly discussed. The rate constants for the adsorption and desorption process at the water-monolayer interface have been calculated on the basis of a single-exponential model. The observed difference of these parameters for daunorubicin and adriamycin suggests a different interaction of these anthracyclines during the adsorption to and/or penetration across the phospholipid monolayer.  相似文献   

9.
Mammalian alkaline phosphatases (AP) belong to glycosylphosphatidyl inositol (GPI) anchored proteins family, which are localised and clustered on the outer layer of the plasma membranes forming microdomains. Using Langmuir film and polarisation modulation infrared reflection absorption spectroscopy (PMIRRAS) techniques, the penetration process of the protein into a phospholipid monolayer have been studied at the air–buffer interface. The penetration of AP-GPI in distearoylphosphatidylcholine monolayers (DSPC) induces a more important surface pressure increase than in dioleoylphosphatidylcholine (DOPC) monolayer. However, the exclusion surface pressure rather similar for both lipids, 20.5 and 22 mN m−1 for, respectively, DSPC and DOPC, indicates that the AP-GPI cannot, in similar conditions, insert by itself into bilayer membranes of either biological or mimetic origin. PMIRRAS suggests that the pure acyl chains perdeuterated DSPC (d70-DSPC) interact with Mg2+ present into the buffer. AP-GPI inserts progressively into the d70-DSPC monolayer changing the environment of phospholipid molecules. Amide I band exhibits helix and β-sheets components with a predominance of the helix. The shapes, intensities and positions of the amide I and II bands suggest for the helix an orientation perpendicular to the interface after a period of molecular reorganisation.  相似文献   

10.
The degradation kinetics of Langmuir monolayer films of a series of biodegradable polyesters has been studied to investigate the effect of degradation medium, alkalinity and enzymes. The degradation behavior of polyester monolayers strongly depended on both degradation medium and surface pressure. As the surface pressure was increased, the degradation rates of poly(l-lactide) (PLLA) and poly[(R)-3-hydroxybutyrate] (P(3HB)) increased in both degradation media. When monolayers were exposed to an alkaline subphase, the degradation of PLLA monolayers occurred at relatively low surface pressures; the PLLA monolayers were hydrolyzed at pH 10.5 regardless of surface pressure, while the alkaline degradation of P(3HB) monolayer occurred over a constant surface pressure of 7 mN/m at pH 11.8. These results have been explained by the difference in hydrophilic/hydrophobic balance of the polymers; PLLA is more hydrophilic than P(3HB). In contrast, the enzymatic degradations of both polymer monolayers occurred at higher constant surface pressures than those of the alkaline treatment; 7 mN/m for PLLA and 10 mN/m for P(3HB). This behavior was attributed to the enzymes being much larger than the alkaline ions: the enzymes need a larger contact area with the submerged monolayers to be activated.  相似文献   

11.
The antimalarial agent halofantrine penetrates dipalmitolylphosphatidylcholine (DPPC) monolayers resulting in an increase in surface pressure and an expansion in area occupied by the lipid components of the monolayer. This phenomenon is observed at concentrations (0.05-0.2 microm) of halofantrine that have no surface activity. Penetration increases with drug concentration and is greatest at low initial surface pressures of the monolayer. A critical surface pressure of the DPPC monolayer has been determined from constant area and constant pressure conditions. The magnitude of these values support the hypothesis that halofantrine readily penetrates the DPPC monolayers. The presence of cholesterol in the DPPC monolayer hampers penetration and a lower critical surface pressure is obtained under such conditions. Even then, a slower rate of penetration is observed only in monolayers maintained at high initial surface pressures (10, 15 mN/m), corresponding to the liquid condensed phase of the monolayer, and not at low surface pressures (2.5, 5.0 mN/m). These results help to give a better understanding of the dynamics of the halofantrine-phospholipid interaction as well as the pharmacodynamic character of the drug.  相似文献   

12.
The dynamic adsorption and penetration of human serum albumin (HSA) into the monolayers of five biologically important surfactants—DSPC, DPPC, DMPC, DMPE and DMPA—were systematically studied using Brewster angle microscopy, film balance and pendent drop techniques. Isotherms after different adsorption times show that the presence of HSA changed the monolayer phase behavior (e.g. the shifts of the LE→LC phase transition in the mixed phospholipid/HSA monolayers). Apparent inhomogeneous phases—‘honey-comb’ (J. Mol. Liq., 2001, 90, 149), ‘block’ or ‘stripe’ shape phases are formed due to the adsorption and penetration of HSA into these phospholipid monolayers at the air/water interface. Both the phase behavior changes and the morphological changes were confirmed by our recent structure studies in DPPA/HSA and DPPS/HSA monolayers using X-ray diffraction at grazing incidence, which directly shows that HSA penetration can change the tilt angle of phospholipids. It was found that the adsorption and penetration of HSA strongly depends on the phospholipid head-group structure and the physical state of the phospholipid films. The latter played a dominant role by providing enough space for the penetration of HSA and affecting the hydrophobic interactions of HSA with the aliphatic chains of phospholipids in monolayers at the air/water interface. In general, HSA penetrates more efficiently and quickly into monolayers of phospholipids in liquid state (e.g. DMPC compared to DSPC) and with unprotected charges (e.g. PA compared to PE and PC).  相似文献   

13.
A series of star-like nonionic surfactants (with two hydrophobic and two hydrophilic chains) with different lengths of hydrophilic and hydrophobic arms were synthesised on the basis of pyromellitic acid dianhydride. The hydrophilic arms were formed by polyoxyethylene and hydrophobic ones either by perfluoro- or by alkyl chains. The adsorption monolayers (Gibbs monolayers) were studied by surface pressure (π) measurements as a function of time for different surfactant concentrations. For the spread monolayers (Langmuir monolayers), the measurements of the surface pressure (π) versus the molecular area (A) as well as the relaxation measurements of the area (A) as a function of time at constant surface pressure were performed. The comparison between the characteristic parameters of two types of monolayers was made in order to understand the effect of the preparation conditions on the structure of these monolayers.It was found that decreasing the fluoroalkyl chain length induced a systematical decrease in the stability of Langmuir monolayers, which is manifested as the Marangoni-Gibbs viscoelasticity of the monolayers. For the surfactants, which have a large number of oxyethylene groups, adsorption at the air/water interface from the bulk solution required extremely long times to reach equilibrium due to the diffusion from the solution and to the conformational rearrangements at the interface. The observation of a hysteresis in the compression/decompression curves for these compounds is explained by the presence of the residual organic solvent molecules absorbed by oxyethylenic chains. A novel model describing the kinetics of desorption or rearrangement of molecules during the lateral compression was suggested, allowing the estimation of both characteristic time of this process and areas per molecule at the equilibrium from the relaxation curves A(t).  相似文献   

14.
This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers (when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-)(1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.  相似文献   

15.
The adsorption behaviour of proteins and systems mixed with surfactants of different nature is described. In the absence of surfactants the proteins mainly adsorb in a diffusion controlled manner. Due to lack of quantitative models the experimental results are discussed partly qualitatively. There are different types of interaction between proteins and surfactant molecules. These interactions lead to protein/surfactant complexes the surface activity and conformation of which are different from those of the pure protein. Complexes formed with ionic surfactants via electrostatic interaction have usually a higher surface activity, which becomes evident from the more than additive surface pressure increase. The presence of only small amounts of ionic surfactants can significantly modify the structure of adsorbed proteins. With increasing amounts of ionic surfactants, however, an opposite effect is reached as due to hydrophobic interaction and the complexes become less surface active and can be displaced from the interface due to competitive adsorption. In the presence of non-ionic surfactants the adsorption layer is mainly formed by competitive adsorption between the compounds and the only interaction is of hydrophobic nature. Such complexes are typically less surface active than the pure protein. From a certain surfactant concentration of the interface is covered almost exclusively by the non-ionic surfactant. Mixed layers of proteins and lipids formed by penetration at the water/air or by competitive adsorption at the water/chloroform interface are formed such that at a certain pressure the components start to separate. Using Brewster angle microscopy in penetration experiments of proteins into lipid monolayers this interfacial separation can be visualised. A brief comparison of the protein adsorption at the water/air and water/n-tetradecane shows that the adsorbed amount at the water/oil interface is much stronger and the change in interfacial tension much larger than at the water/air interface. Also some experimental data on the dilational elasticity of proteins at both interfaces measured by a transient relaxation technique are discussed on the basis of the derived thermodynamic model. As a fast developing field of application the use of surface tensiometry and rheometry of mixed protein/surfactant mixed layers is demonstrated as a new tool in the diagnostics of various diseases and for monitoring the progress of therapies.  相似文献   

16.
Novel water-soluble amphiphilic triblock copolymers poly(glycerol monomethacrylate)-b-poly(propylene oxide)-b-poly(glycerol monomethacrylate) (PGMA-b-PPO-b-PGMA) were synthesized because of their expected enhanced ability to interact with biological membranes compared to the well-known poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-b-PPO-b-PEO) block copolymers. Their bulkier hydrophilic PGMA blocks might induce a disturbance in the packing of liquid-crystalline lipid bilayers in addition to the effect caused by the hydrophobic PPO block alone. To gain a better insight into the polymer-membrane interactions at the molecular level, the adsorption kinetics and concomitant interactions of (PGMA14)(2-)PPO(34) with model membranes of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were monitored using infrared reflection absorption spectroscopy (IRRAS) coupled with Brewster angle microscopy (BAM) and surface pressure (pi) measurements. The maximum penetration surface pressure of ca. 39 mN/m suggests that (PGMA14)(2-)PPO(34) is able to insert into lipid monolayers even above the so-called monolayer-bilayer equivalent pressure of 30-35 mN/m. Copolymer adsorption to a liquid-expanded DPPC-d62 monolayer proceeds in a two-step mechanism: (i) initially only the more hydrophobic PPO middle block penetrates the lipid monolayer; (ii) following the liquid-expanded-liquid-condensed (LE-LC) phase transition, the bulky PGMA hydrophilic blocks are dragged into the headgroup region as the PPO block inserts further into the fatty acid region. The adsorption kinetics is considerably faster for DMPC-d54 monolayers due to their higher fluidity. Copolymer adsorption to an LC-DPPC-d62 monolayer leads to a change in the monolayer packing by forcing the lipid alkyl chains into a more vertical orientation, their tilt angle with respect to the surface normal being reduced from initially 30 degrees +/- 3 degrees to 18 degrees +/- 3 degrees. BAM images rule out macroscopic phase separation and show that coalescence of DPPC-d62 LC domains takes place at relatively low surface pressures of pi > or = 23 mN/m, suggesting that (PGMA14)(2-)PPO (34) partitions into both LE as well as LC domains.  相似文献   

17.
The surface activity of the poly–[block (ethylene oxide)]–poly [block (propylene oxide)]–poly [block (ethylene oxide)] copolymers (EO)x–(PO)y–(EO)x adsorbed together with dihexadecyl phosphoric acid (DHP), a synthetic phospholipid, is analyzed from their surface pressure and surface potential isotherms. The block copolymers of (EO)x–(PO)y–(EO)x with variable molecular weight (1100–14 000) were dissolved in the subphase for DHP monolayers. The concentration of the copolymers within the aqueous subphase were selected to render an initial surface tension of 60 mN/m. The simultaneous adsorption of the copolymer and DHP is attested by the observation of a liquid expanded state at large areas, absent for pure DHP monolayers. Above some critical surface pressure all copolymers cited above are expelled from the interface. The surface potential isotherms, which give information on the component of the molecular dipole moment normal to the plane of the monolayer, are interpreted in terms of changes in the copolymer conformation as well as in terms of the copolymer desorption from the air–liquid interface. For an equal hydrophobic/hydrophilic ratio, the size of the chains or molecular weight is decisive in the mechanism of the copolymer expulsion from the air–liquid interface.  相似文献   

18.
The induced removal of dipalmitoyl phosphatidylcholine (DPPC) by the exclusion of fibrinogen from mixed DPPC/fibrinogen monolayers at compressed air/liquid interfaces was analyzed. The surface pressure-area hysteresis curves of the monolayers at interfaces were obtained by a Langmuir trough. The hysteresis curves of equilibrium fibrinogen adsorption layers suggest that fibrinogen desorption during the area compression stage became significant at a higher bulk concentration of 1000 ppm. For mixed monolayers of DPPC with fibrinogen, the fibrinogen molecules were expelled from the interface upon compression due to the presence of insoluble DPPC molecules. The squeeze-out of fibrinogen molecules evidently removed a significant number of DPPC molecules from the interface, with the extent depending on fibrinogen surface concentration. During the subsequent area expansion stage, fibrinogen molecules entered the interface and participated in the rise of surface pressure. The induced loss of free DPPC molecules at the interface by the expelled fibrinogen molecules during the area compression stage was then evaluated from the hysteresis curves.  相似文献   

19.
Microcin J25 forms stable monolayers at the air-water interface showing a collapse at a surface pressure of 5 mN/m, 220 mV of surface potential, and 6 fV per squared centimeter of surface potential per unit of molecular surface density. The adsorption of microcin J25 from the subphase at clean interfaces leads to a rise of 10 mN/m in surface pressure and a surface potential of 220 mV. From these data microcin appears to be a poor surfactant per se. Nevertheless, the interaction with the lipid monolayer further increase the stability of the peptide at the interface depending on the mode in which the monolayer is formed. Spreading with egg PC leads to nonideal mixing up to 7 mN/m, with hyperpolarization and expansion of components at the interface, with a small excess free energy of mixing caused by favorable contributions to entropy due to molecular area expansion compensating for the unfavorable enthalpy changes arising from repulsive dipolar interactions. Above 7 mN/m microcin is squeezed out, leaving a film of pure phospholipid. Nevertheless, the presence of lipid at 10 and 20 mN/m stabilize further microcin at the interface and adsorption from the subphase proceeds up to 30 mN/m, equivalent to surface pressure in bilayers.  相似文献   

20.
Protein adsorption on poly(ethylene oxide) (PEO) and oligo(ethylene oxide) (OEO) monolayers is studied at different packing densities using the Langmuir technique. In the case of a PEO monolayer, a protein adsorption minimum is revealed at sigma(-1) = 10 nm(2) for both lysozyme and fibrinogen. Manifested are two packing density regimes of steric repulsion and compressive attraction between PEO and a protein on top of the overall attraction of the protein to the air/water interface. The observed protein adsorption minimum coincides with the maximum of the surface segment density at sigma(-1) = 10 nm(2). However, OEO monolayer presents a different scenario, namely that the amount of protein adsorbed decreases monotonically with increasing packing density, indicating that the OEO chains merely act as a steric barrier to protein adsorption onto the air/water interface. Besides, in the adsorption of fibrinogen, three distinct kinetic regimes controlled by diffusion, penetration and rearrangement are recognized, whereas only the latter two were made out in the adsorption of lysozyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号