首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The one‐pot synthesis of 4‐aryl‐1,4‐dihydro‐2‐thioxo‐2H‐3,1‐benzoxazine‐4‐acetic acid derivatives 2 was achieved in good yields by the reaction of aryl(2‐isothiocyanatophenyl)methanones 1 with lithium enolates of acetates and tertiary acetamides. (2E)‐1‐(2‐Isothiocyanatophenyl)‐3‐phenylprop‐2‐en‐1‐one ( 3 ) gave 1,4‐dihydro‐4‐[(1E)‐2‐phenylethenyl]‐2‐thioxo‐2H‐3,1‐benzoxazine‐4‐acetic acid derivatives 4 in good yields as well.  相似文献   

2.
Novel polysubstituted ‐1,5‐benzothiazepine, ‐1,5‐benzoxazepine, and ‐1,5‐benzodiazepine were prepared in good yields by the reaction of hydrazono derivatives with o‐thioaminophenol, o‐aminophenol and o‐phenylenediamine via a one‐pot reaction.  相似文献   

3.
An easy, highly efficient and a new convenient one‐pot, two‐step approach to the synthesis of 3‐(3‐benzyl‐2‐(phenylimino)‐2,3‐dihydrothiazol‐4‐yl)‐6‐methyl‐4‐(2‐oxo‐2‐phenylethoxy)‐3,4‐dihydro‐2H‐pyran‐2‐one is described. These compounds were synthesized from 3‐(3‐benzyl‐2‐(phenylimino)‐2,3‐dihydrothiazol‐4‐yl)‐4‐hydroxy‐6‐methyl‐3,4‐dihydro‐2H‐pyran‐2‐one and α‐bromoketones in good yields. The compounds 4 were synthesized by a multi‐component reaction between 1 , 2 , and 3 and the prominent features of this protocol are mild reaction conditions, operation simplicity, and good to high yields of products.  相似文献   

4.
An efficient procedure for the synthesis of N‐alkyl‐2,5‐diaryl‐1,3‐dioxol‐4‐amines 3 via a one‐pot reaction of aromatic aldehydes 2 and alkyl isocyanides 1 at room temperature in good yields is described (Scheme 1, Table).  相似文献   

5.
《中国化学》2017,35(12):1808-1812
A one‐pot three‐component reaction of aldehydes, nitroalkanes and NaN3 for the synthesis of NH ‐1,2,3‐triazoles has been developed. The reaction provides a safe, efficient and step‐economic approach for the synthesis of various NH ‐1,2,3‐triazoles in good to excellent yields.  相似文献   

6.
A facile one‐pot, three‐component protocol for the synthesis of novel spiro[3H‐indole‐3,2′‐thiazolidine]‐2,4′(1H)‐diones by condensing 1H‐indole‐2,3‐diones, 4H‐1,2,4‐triazol‐4‐amine and 2‐sulfanylpropanoic acid in [bmim]PF6 (1‐butyl‐3‐methyl‐1H‐imidazolium hexafluorophosphate) as a recyclable ionic‐liquid solvent gave good to excellent yields in the absence of any catalyst (Scheme 1 and Table 2). The advantages of this protocol over conventional methods are the mild reaction conditions, the high product yields, a shorter reaction time, as well as the eco‐friendly conditions.  相似文献   

7.
The three‐component Biginelli‐like cyclocondensation reaction of enamines 1 , urea, and aldehydes in dioxane/acetic acid efficiently afforded the corresponding 6‐unsubstituted 3,4‐dihydropyrimidin‐2(1H)‐ones 2 in good yields (Scheme 1, Table). The corresponding reaction of azaenamine (=hydrazone) 7 with benzaldehyde and urea afforded 6‐acetyl‐1,2,4‐triazin‐3(2H)‐ones in good yields (Scheme 3).  相似文献   

8.
An efficient approach for the synthesis of 2,6‐dimethyl‐1,3‐diarylpyrano[4,3‐b]pyrrol‐4(1H)‐one derivatives has been established. The reaction was performed in aqueous media using readily available and inexpensive 6‐methyl‐4‐(phenylamino)‐2H‐pyran‐2‐one and nitroolefin as substrates. The present methodology shows many attractive advantages, such as using water as green reaction media, inexpensive and environmentally friendly acetic acid as catalyst, easy work‐up procedure, and good to excellent yields.  相似文献   

9.
N‐Aryl‐2‐nitrosoanilines, available from the reaction of N‐arylamines with nitroarenes, condense under alkaline conditions with alkylated derivatives of cyanoacetic esters furnishing quinoxalin‐2(1H)‐one N‐oxides in good to excellent yields. The reaction involves the condensation of the carbanion with the nitroso group leading to the nitrone intermediate, followed by intramolecular acylation of the amine function.  相似文献   

10.
An efficient and environmentally friendly procedure for the one-pot synthesis of tetrahydropyrimidinones from aldehydes, β-diketones and urea/thiourea by using magnesium bromide as an inexpensive and easily available catalyst under solvent-free conditions was described. Compared with the classical Biginelli reaction conditions, this new method has the advantage of good to excellent yields (74%-94%) and short reaction time (45-90 min). The structure of the Biginelli reaction product from β-diketone, salicylaldehyde and urea has been proposed to possess an oxygen-bridge by cyclization (intramolecular Michael-addition).  相似文献   

11.
A new one‐pot, four‐component reaction of phenylglyoxal or ethylglyoxalate, 1,3‐dicarbonyls, N ,N‐ dimethylbarbituric acid, and aromatic amines for the synthesis of highly substituted pyrroles or dihydro‐1H‐pyrrole containing barbituric acid in moderate‐to‐good yields is described. Short reaction time, mild reaction condition, use of simple experimental procedure, and prompt isolation of the products are some advantages of this protocol.  相似文献   

12.
An efficient one‐pot, three‐component synthesis of novel dispiro[oxindole‐3,3′‐pyrrolidines] by 1,3‐dipolar cycloaddition of azomethine ylides, in situ generated by reaction of 1,2‐diones with sarcosine and subsequent decarboxylation, with a series of (E)‐3‐benzylidene‐2,3‐dihydro‐1H‐indol‐2‐ones is reported. Molecular complexity is generated in only one synthetic step. All reactions proceed with excellent regioselectivity and in good‐to‐excellent yields. The workup is easy, the reaction times are short, and no catalyst is required.  相似文献   

13.
The hitherto unreported, highly functionalized 1H‐pyrazole‐3‐carboxylates 3 have been synthesized in good yields via a one‐pot three‐component domino reaction of phenylhydrazines, dialkyl acetylenedicarboxylates, and ninhydrin under mild conditions for the first time. No co‐catalyst or activator is required for this multicomponent reaction, and the reaction is, from an experimental point of view, simple to perform (Scheme 1). The structures of compounds 3 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization/addition reaction is proposed (Scheme 2).  相似文献   

14.
An efficient and green procedure for the synthesis of novel 12‐aryl‐8,9,10,12‐tetrahydrobenzo[a]xanthen‐11‐one derivatives has been described through one‐pot condensation of 2‐naphthol, arylaldehyde and 5,5‐dimethyl‐cyclohexane‐1,3‐dione in the presence of sulfamic acid (NH2SO3H) in ionic liquid 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIM]BF4). These reactions proceed with good yields under short reaction time. Furthermore, the green catalytic system can be recycled specific times with no decreases in yields and reaction rates.  相似文献   

15.
A mild and efficient method for the one‐pot synthesis of substituted dihydropyrrol‐2‐one derivatives is described via four‐component domino reaction of amines, dialkyl acetylenedicarboxyaltes and formaldehyde in the presence of 1‐methyl‐2‐oxopyrrolidinium hydrogen sulfate ([Hpyro][HSO4]) as ionic liquid catalyst. This facile approach proceeded smoothly in good to high yields and pure products are separated from the reaction mixture by simple filtration.  相似文献   

16.
A novel Biginelli‐like cyclocondensation reaction is efficiently catalyzed by iodotrimethylsilane (Me3SiI) in MeCN. The reaction proceeds at room temperature by a three‐component one‐pot condensation of ketones with aldehydes and urea to afford 5‐unsubstituted 3,4‐dihydropyrimidin‐2(1H)‐ones in good yields (Scheme 1 and Table).  相似文献   

17.
A one‐pot reaction of ninhydrin, N‐methyl‐C‐phenyl nitrone, and secondary amine leading to the unprecedented synthesis of 3,3‐disubstituted isochroman‐1,4‐diones is described here. In this reaction, nitrone acts as an oxygen atom donor producing an imine as a side product. The mild reaction conditions, the flexibility of the secondary amines that can be used, the novelty of the product, and the good yields are the highlights of this reaction.  相似文献   

18.
The present study provides an efficient strategy for the preparation of novel N‐substituted‐4‐methyl‐quinolin‐1(2H)‐one derivatives via two‐step Ugi/Heck reaction. The procedure is based on the Ugi coupling between 2‐bromoanilines, various aromatic aldehydes, vinylacetic acid, and isocyanides, and then intramolecular Heck reaction, which leads to the formation of the title compounds in good yields.  相似文献   

19.
In this research, in order to synthesize a series of ethyl 2‐amino‐4‐benzoyl‐5‐oxo‐5,6‐dihydro‐4H‐pyrano[3,2‐c]quinoline‐3‐carboxylates, a green and an efficient method is proposed through one‐pot three‐component reaction of substituted arylglyoxals, ethyl cyanoacetate, and 4‐hydroxyquinolin‐2(1H)‐one in the presence of terapropylammonium bromide as a catalyst in good yields. All synthesized new substances were characterized by FTIR, 1H‐NMR, and 13C‐NMR spectral data and elemental analysis.  相似文献   

20.
Addition reactions of thioamide dianions that were derived from N‐arylmethyl thioamides to imines and aziridines were carried out. The reactions of imines gave the addition products of N‐thioacyl‐1,2‐diamines in a highly diastereoselective manner in good‐to‐excellent yields. The diastereomeric purity of these N‐thioacyl‐1,2‐diamines could be enriched by simple recrystallization. The reduction of N‐thioacyl‐1,2‐diamines with LiAlH4 gave their corresponding 1,2‐diamines in moderate‐to‐good yields with retention of their stereochemistry. The oxidative‐desulfurization/cyclization of an N‐thioacyl‐1,2‐diamine in CuCl2/O2 and I2/pyridine systems gave the cyclized product in moderate yield and the trans isomer was obtained as the sole product. On the other hand, a similar cyclization reaction with antiformin (aq. NaClO) as an oxidant gave the cis isomer as the major product. The reactions of N‐tosylaziridines gave the addition products of N‐thioacyl‐1,3‐diamines with low diastereoselectivity but high regioselectivity and in good‐to‐excellent yields. The use of AlMe3 as an additive improved the efficiency and regioselectivity of the reaction. The stereochemistry of the obtained products was determined by X‐ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号