首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tetrabutylammonium (TBA+) salts of square‐planar monoanionic gold complexes of the unsymmetrically substituted Ar,H‐edt2? 1,2‐dithiolene ligands (Ar,H‐edt2?=arylethylene‐1,2‐dithiolato; Ar=phenyl ( 1 ?), 2‐naphthyl ( 2 ?), and 1‐pyrenyl ( 3 ?)) were synthesized and characterized by spectroscopic and electrochemical methods and the corresponding neutral species ( 1 , 2 , and 3 , respectively) were obtained in CH2Cl2 solution at room temperature by diiodine oxidation. The single‐crystal X‐ray diffraction structural data collected for (TBA+)( 2 ?), supported by DFT theoretical calculations, are consistent with the ene‐1,2‐dithiolate form of the ligand and the AuIII oxidation state. All complexes feature intense near‐IR absorptions (at about 1.5 μm) in their neutral states and Vis‐emitting properties in the 400–550 nm range, the energy of which is controlled by the charge of the complex in the case of the 3 ?/ 3 couple. The spectroscopic and electrochemical features of 1 x? and 2 x? (x=0, 1), both in their cis and trans conformations, were investigated by means of DFT and time‐dependent (TD) DFT calculations.  相似文献   

2.
Two of the title compounds, namely (E)‐1,2‐bis­(1‐methyl­benzimidazol‐2‐yl)ethene, C18H16N4, (Ib), and (E)‐1,2‐bis­(1‐ethyl­benzimidazol‐2‐yl)ethene, C20H20N4, (Ic), consist of centrosymmetric trans‐bis­(1‐alkyl­benzimidazol‐2‐yl)ethene mol­ecules, while 3‐eth­yl‐2‐[(E)‐2‐(1‐ethyl­benzimidazol‐2‐yl)­ethen­yl]benzimidazol‐1‐ium perchlorate, C20H21N4+·ClO4, (II), contains the monoprotonated analogue of compound (Ic). In the three structures, the benzimidazole and benzimidazolium moieties are essentially planar; the geometric parameters for the ethene linkages and their bonds to the aromatic groups are consistent with double and single bonds, respectively, implying little, if any, conjugation of the central C=C bonds with the nitro­gen‐containing rings. The C—N bond lengths in the N=C—N part of the benzimidazole groups differ and are consistent with localized imine C=N and amine C—N linkages in (Ib) and (Ic); in contrast, the corresponding distances in the benzimidazolium cation are equal in (II), consistent with electron delocalization resulting from protonation of the amine N atom. Crystals of (Ib) and (Ic) contain columns of parallel mol­ecules, which are linked by edge‐over‐edge C—H⋯π overlap. The columns are linked to one another by C—H⋯π inter­actions and, in the case of (Ib), C—H⋯N hydrogen bonds. Crystals of (II) contain layers of monocations linked by π–π inter­actions and separated by both perchlorate anions and the protruding eth­yl groups; the cations and anions are linked by N—H⋯O hydrogen bonds.  相似文献   

3.
The reaction of cationic diolefinic rhodium(I) complexes with 2‐(diphenylphosphino)benzaldehyde (pCHO) was studied. [Rh(cod)2]ClO4 (cod=cycloocta‐1,5‐diene) reacted with pCHO to undergo the oxidative addition of one pCHO with (1,2,3‐η)cyclooct‐2‐en‐1‐yl (η3‐C8H13) formation, and the coordination of a second pCHO molecule as (phosphino‐κP)aldehyde‐κO(σ‐coordination) chelate to give the 18e acyl(allyl)rhodium(III) species [Rh(η3‐C8H13)(pCO)(pCHO)]ClO4 (see 1 ). Complex 1 reacted with [Rh(cod)(PR3)2]ClO4 (R=aryl) derivatives 3 – 6 to give stable pentacoordinated 16e acyl[(1,2,3‐η)‐cyclooct‐2‐en‐1‐yl]rhodium(III) species [Rh(η3‐C8H13)(pCO)(PR3)]ClO4 7 – 10 . The (1,2,3‐η)‐cyclooct‐2‐en‐1‐yl complexes contain cis‐positioned P‐atoms and were fully characterized by NMR, and the molecular structure of 1 was determined by X‐ray crystal diffraction. The rhodium(III) complex 1 catalyzed the hydroformylation of hex‐1‐ene and produced 98% of aldehydes (n/iso=2.6).  相似文献   

4.
《化学:亚洲杂志》2017,12(8):910-919
Reduction of aluminum(III), gallium(III), and indium(III) phthalocyanine chlorides by sodium fluorenone ketyl in the presence of tetrabutylammonium cations yielded crystalline salts of the type (Bu4N+)2[MIII(HFl−O)(Pc.3−)].−(Br) ⋅ 1.5 C6H4Cl2 [M=Al ( 1 ), Ga ( 2 ); HFl−O=fluoren‐9‐olato anion; Pc=phthalocyanine] and (Bu4N+) [InIIIBr(Pc.3−)].− ⋅ 0.875 C6H4Cl2 ⋅ 0.125 C6H14 ( 3 ). The salts were found to contain Pc.3− radical anions with negatively charged phthalocyanine macrocycles, as evidenced by the presence of intense bands of Pc.3− in the near‐IR region and a noticeable blueshift in both the Q and Soret bands of phthalocyanine. The metal(III) atoms coordinate HFl−O anions in 1 and 2 with short Al−O and Ga−O bond lengths of 1.749(2) and 1.836(6) Å, respectively. The C−O bonds [1.402(3) and 1.391(11) Å in 1 and 2 , respectively] in the HFl−O anions are longer than the same bond in the fluorenone ketyl (1.27–1.31 Å). Salts 1 – 3 show effective magnetic moments of 1.72, 1.66, and 1.79 μB at 300 K, respectively, owing to the presence of unpaired S= 1/2 spins on Pc.3−. These spins are coupled antiferromagnetically with Weiss temperatures of −22, −14, and −30 K for 1 – 3 , respectively. Coupling can occur in the corrugated two‐dimensional phthalocyanine layers of 1 and 2 with an exchange interaction of J /k B=−0.9 and −1.1 K, respectively, and in the π‐stacking {[InIIIBr(Pc.3−)].−}2 dimers of 3 with an exchange interaction of J /k B=−10.8 K. The salts show intense electron paramagnetic resonance (EPR) signals attributed to Pc.3−. It was found that increasing the size of the central metal atom strongly broadened these EPR signals.  相似文献   

5.
《化学:亚洲杂志》2017,12(17):2172-2176
Hydrothermal reactions of metal nitrates and ligand bis(5‐(pyridine‐2‐yl)‐1,2,4‐triazol‐3‐yl)methane (H2L1) gave three cluster compounds, {Cr2}, {Zn12} and {Fe8}. Notably, methylene group of H2L1 was in situ oxidized either to hydroxymethylated (L2‐O)3− in the metallo‐ring {Zn12} or to a rigid carbonylated (L3=O)2− in the screw‐type {Fe8}. In light of comparative experimental results, NO3 was deduced to be of a catalytic role in the ligand oxidation. Metal ion could be regarded as an “induced” tool for clusters generation in self‐assembly process.  相似文献   

6.
A diverse set of 2 e/2 H+ reactions are described that interconvert [RuII(bpy)(en*)2]2+ and [RuIV(bpy)(en‐H*)2]2+ (bpy=2,2′‐bipyridine, en*=H2NCMe2CMe2NH2, en*‐H=H2NCMe2CMe2NH), forming or cleaving different O−H, N−H, S−H, and C−H bonds. The reactions involve quinones, hydrazines, thiols, and 1,3‐cyclohexadiene. These proton‐coupled electron transfer reactions occur without substrate binding to the ruthenium center, but instead with precursor complex formation by hydrogen bonding. The free energies of the reactions vary over more than 90 kcal mol−1, but the rates are more dependent on the type of X−H bond involved than the associated ΔG °. There is a kinetic preference for substrates that have the transferring hydrogen atoms in close proximity, such as ortho ‐tetrachlorobenzoquinone over its para ‐isomer and 1,3‐cyclohexadiene over its 1,4‐isomer, perhaps hinting at the potential for concerted 2 e/2 H+ transfers.  相似文献   

7.
Polystyrene copolymers of the type ( P −H)1−x( P −(CH2)n−COOSnR3)x containing [(1‐oxoalkyl)oxy]triphenylstannane or tributyl[(1‐oxoalkyl)oxy]stannanes as side chains ( P −H=styrene; P −(CH2)n−COOSnR3 =para‐substituted styrene‐like monomeric unit with R=Ph (x=0.1), Bu (x=0.5); n=2–4) were investigated. The tributyl[(1‐oxoalkyl)oxy]stannane copolymer was prepared by direct conversion of the corresponding copolymeric methyl esters with hexabutyldistannoxane. By contrast, the [(1‐oxoalkyl)oxy]triphenylstannane copolymer could be prepared only by a procedure involving two reaction steps consisting of a preliminary hydrolysis of the related methyl ester ( P −H)1‐x( P −(CH2)n−COOMe)x followed by functionalization of the corresponding poly(carboxylic acid) ( P −H)1‐x( P −(CH2n−COOH)x with hydroxytriphenylstannane. Attempts to directly convert the methyl ester with hydroxytriphenylstannane or hexaphenyldistannoxane led to the formation of uncompletely functionalized product. The structure of the stannane‐functionalized polymers was investigated in solution and solid state by NMR, IR, and thermal analysis. The tributylstannane and triphenylstannane copolymers were assessed as chloride‐selective anion carriers in polymeric‐liquid‐membrane potentiometric ion‐selective electrodes.  相似文献   

8.
The synthesis and structural characterization of 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazole [C16H12N2O2, (I)], 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium chloride monohydrate [C16H13N2O2+·Cl·H2O, (II)] and the hydrobromide salt 5,6‐dimethyl‐2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium bromide [C18H17N2O2+·Br, (III)] are described. Benzimidazole (I) displays two sets of aromatic interactions, each of which involves pairs of molecules in a head‐to‐tail arrangement. The first, denoted set (Ia), exhibits both intermolecular C—H...π interactions between the 2‐(furan‐2‐yl) (abbreviated as Fn) and 1‐(furan‐2‐ylmethyl) (abbreviated as MeFn) substituents, and π–π interactions involving the Fn substituents between inversion‐center‐related molecules. The second, denoted set (Ib), involves π–π interactions involving both the benzene ring (Bz) and the imidazole ring (Im) of benzimidazole. Hydrated salt (II) exhibits N—H...OH2...Cl hydrogen bonding that results in chains of molecules parallel to the a axis. There is also a head‐to‐head aromatic stacking of the protonated benzimidazole cations in which the Bz and Im rings of one molecule interact with the Im and Fn rings of adjacent molecules in the chain. Salt (III) displays N—H...Br hydrogen bonding and π–π interactions involving inversion‐center‐related benzimidazole rings in a head‐to‐tail arrangement. In all of the π–π interactions observed, the interacting moieties are shifted with respect to each other along the major molecular axis. Basis set superposition energy‐corrected (counterpoise method) interaction energies were calculated for each interaction [DFT, M06‐2X/6‐31+G(d)] employing atomic coordinates obtained in the crystallographic analyses for heavy atoms and optimized H‐atom coordinates. The calculated interaction energies are −43.0, −39.8, −48.5, and −55.0 kJ mol−1 for (Ia), (Ib), (II), and (III), respectively. For (Ia), the analysis was used to partition the interaction energies into the C—H...π and π–π components, which are 9.4 and 24.1 kJ mol−1, respectively. Energy‐minimized structures were used to determine the optimal interplanar spacing, the slip distance along the major molecular axis, and the slip distance along the minor molecular axis for 2‐(furan‐2‐yl)‐1H‐benzimidazole.  相似文献   

9.
The title compound, [Cd3(C8H10O4)3(C12H9N3)2(H2O)2]n or [Cd3(chdc)3(4‐PyBIm)2(H2O)2]n, was synthesized hydrothermally from the reaction of Cd(CH3COO)2·2H2O with 2‐(pyridin‐4‐yl)‐1H‐benzimidazole (4‐PyBIm) and cyclohexane‐1,4‐dicarboxylic acid (1,4‐chdcH2). The asymmetric unit consists of one and a half CdII cations, one 4‐PyBIm ligand, one and a half 1,4‐chdc2− ligands and one coordinated water molecule. The central CdII cation, located on an inversion centre, is coordinated by six carboxylate O atoms from six 1,4‐chdc2− ligands to complete an elongated octahedral coordination geometry. The two terminal rotationally symmetric CdII cations each exhibits a distorted pentagonal–bipyramidal geometry, coordinated by one N atom from 4‐PyBIm, five O atoms from three 1,4‐chdc2− ligands and one O atom from an aqua ligand. The 1,4‐chdc2− ligands possess two conformations, i.e.e,etrans‐chdc2− and e,acis‐chdc2−. The cis‐1,4‐chdc2− ligands bridge the CdII cations to form a trinuclear {Cd3}‐based chain along the b axis, while the trans‐1,4‐chdc2− ligands further link adjacent one‐dimensional chains to construct an interesting two‐dimensional network.  相似文献   

10.
The sodium salt of [immucillin‐A–CO2H] (Imm‐A), namely catena‐poly[[[triaquadisodium(I)](μ‐aqua)[μ‐(1S)‐N‐carboxylato‐1‐(9‐deazaadenin‐9‐yl)‐1,4‐dideoxy‐1,4‐imino‐d ‐ribitol][triaquadisodium(I)][μ‐(1S)‐N‐carboxylato‐1‐(9‐deazaadenin‐9‐yl)‐1,4‐dideoxy‐1,4‐imino‐d ‐ribitol]] tetrahydrate], {[Na2(C12H13N4O6)2(H2O)7]·4H2O}n, (I), forms a polymeric chain via Na+—O interactions involving the carboxylate and keto O atoms of two independent Imm‐A molecules. Extensive N,O—H...O hydrogen bonding utilizing all water H atoms, including four waters of crystallization, provides crystal packing. The structural definition of this novel compound was made possible through the use of synchrotron radiation utilizing a minute fragment (volume ∼2.4 × 10−5 mm−3) on a beamline optimized for protein data collection. A summary of intra‐ring conformations for immucillin structures indicates considerable flexibility while retaining similar intra‐ring orientations.  相似文献   

11.
3‐Methyl‐3‐(3‐pentyl)‐1,2‐dioxetane 1 and 3‐methyl‐3‐(2,2‐dimethyl‐1‐propyl)‐1,2‐dioxetane 2 were synthesized in low yield by the α‐bromohydroperoxide method. The activation parameters were determined by the chemiluminescence method (for 1 ΔH‡ = 25.0 ± 0.3 kcal/mol, ΔS‡ = −1.0 entropy unit (e.u.), ΔG‡ = 25.3 kcal/mol, k1 (60°C) = 4.6 × 10−4s−1; for 2 ΔH‡ = 24.2 ± 0.2 kcal/mol, ΔS‡ = −2.0 e.u., ΔG‡ = 24.9 kcal/mol, k1 (60°C) = 9.2 × 10−4s−1. Thermolysis of 1–2 produced excited carbonyl fragments (direct production of high yields of triplets relative to excited singlets) (chemiexcitation yields for 1: ϕT = 0.02, ϕS ≤ 0.0005; for 2: ϕT = 0.02, ϕS ≤ 0.0004). The results are discussed in relation to a diradical‐like mechanism. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:176–179, 2001  相似文献   

12.
The crystal structure of N‐[(1‐{2‐oxo‐2‐[2‐(pyrazin‐2‐ylcarbonyl)hydrazin‐1‐yl]ethyl}cyclohexyl)methyl]pyrazine‐2‐carboxamide monohydrate (Pyr‐Gpn‐NN‐NH‐Pyr·H2O), C19H23N7O3·H2O, reveals an unusual trans–gauche (tg) conformation for the gabapentin (Gpn) residue around the Cγ—Cβ1) and Cβ—Cα2) bonds. The molecular conformation is stabilized by intramolecular N—H...N hydrogen bonds and weak C—H...O interactions. The packing of the molecules in the crystal lattice shows a network of strong N—H...O and O—H...O hydrogen bonds together with weak C—H...O and π–π inteactions.  相似文献   

13.
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (or uracil‐5‐carboxylate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2‐(2‐pyridyl)‐1H‐benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octahedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Intermolecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen‐bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two‐dimensional sheet; a third hydrogen bond (N—H...O) formed by the water molecule as a hydrogen‐bond acceptor and a Hpybim N atom further links these sheets to yield a three‐dimensional supramolecular framework. Possible partial π–π stacking interactions involving the Hpybim rings are also observed in the crystal structure.  相似文献   

14.
The 1‐cyclopropyl‐6‐fluoro‐1,4‐dihydro‐4‐oxo‐7‐(piperazin‐1‐yl)quinoline‐3‐carboxylic acid (=ciprofloxacin; 1 ) undergoes low‐efficiency (Φ=0.07) substitution of the 6‐fluoro by an OH group on irradiation in H2O via the ππ* triplet (detected by flash photolysis, λmax 610 nm, τ 1.5 μs). Decarboxylation is a minor process (≤5%). The addition of sodium sulfite or phosphate changes the course of the reaction under neutral conditions. Reductive defluorination is the main process in the first case, while defluorination is accompanied by degradation of the piperazine moiety in the presence of phosphate. In both cases, the initial step is electron‐transfer quenching of the triplet (kq=2.3⋅108M −1 s−1 and 2.2⋅107M −1 s−1, respectively). Oxoquinoline derivative 1 is much more photostable under acidic conditions, and in this case the F‐atom is conserved, and the piperazine group is stepwise degraded (Φ=0.001).  相似文献   

15.
Bifunctional organic ligands are very popular for the design of coordination polymers because they allow the formation of a great diversity of structures. In the title coordination polymer, the new bifunctional inversion‐symmetric ligand 2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalic acid (abbreviated as H2bttpa) links CdII cations, giving rise to the three‐dimensional CdII coordination polymer catena‐poly[diaqua[μ4‐2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalato‐κ4O1:O4:N4:N4′]cadmium(II)], [Cd(C12H6N6O4)(H2O)2]n or [Cd(bttpa)(H2O)2]n. The asymmetric unit consists of half a CdII cation, half a bttpa2− ligand and one coordinated water molecule. The CdII cation is located on a twofold axis and is hexacoordinated in a distorted octahedral environment of four O and two N atoms. Four different bttpa2− ligands contribute to this coordination, with two carboxylate O atoms in trans positions and two triazole N atoms in cis positions. Two aqua ligands in cis positions complete the coordination sphere. The fully deprotonated bttpa2− ligand sits about a crystallographic centre of inversion and links two CdII cations to form a chain in a μ2‐terephthalato‐κ2O1:O4 bridge. This chain extends in the other two directions via the triazole heterocycles, producing a three‐dimensional framework. O—H…O hydrogen bonds and weak C—H…N interactions stabilize the three‐dimensional crystal structure. The FT–IR spectrum, X‐ray powder pattern, thermogravimetric behaviour and solid‐state photoluminescence of the title polymer have been investigated. The photoluminescence is enhanced and red‐shifted with respect to the uncoordinated ligand.  相似文献   

16.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

17.
The photophysical properties of transition metal complexes of the 5,6‐dimethyl‐2‐(pyridin‐2‐yl)‐1‐(pyridin‐2‐ylmethyl)‐1H‐benzimidazole ligand are of interest. Dichlorido[5,6‐dimethyl‐2‐(pyridin‐2‐yl)‐1‐(pyridin‐2‐ylmethyl)‐1H‐benzimidazole‐κ2N 2,N 3]platinum(II), [PtCl2(C20H18N4)], is luminescent in the solid state at room temperature. The compound displays a distorted square‐planar coordination geometry. The Pt—N(imidazole) bond length is shorter than the Pt—N(pyridine) bond length. The extended structure reveals that symmetry‐related molecules display weak C—H…N, C—H…Cl, and C—H…Pt hydrogen‐bonding interactions that are clearly discernable in the Hirshfeld surface and fingerprint plots. The intermolecular C—H…Pt and C—H…N interactions have been explored using density functional theory. The result of an analysis of the distance dependence of C—H…Pt yields a value consistent with that observed in the solid‐state structure. The energy of interaction for the C—H…Pt interaction is found to be about −11 kJ mol−1.  相似文献   

18.
The reaction of (diaqua)(N,N′‐ethylene‐bis(salicylidiniminato)manganese(III) with aqueous sulphite buffer results in the formation of the corresponding mono sulphito complex, [Mn(Salen)(SO3)] (S‐bonded isomer) via three distinct paths: (i) Mn(Salen)(OH2)2+ + HSO3 → (k1); (ii) Mn(Salen)(OH2)2+ + SO32− → (k2); (III) Mn(Salen)(OH2)(OH) + SO32− → (k3) in the stopped flow time scale. The fact that the mono sulphito complex does not undergo further anation with SO32−/HSO3 may be attributed to the strong trans‐activating influence of the S‐bonded sulphite. The values of the rate constants (10−2ki/dm2 mol−1 s−1 at 25°C, I = 0.3 mol dm−3), ΔHi#/kJ mol−1 and ΔSi#/J K−1 mol−1 respectively are: 2.97 ± 0.27, 42.4 ± 0.2, −55.3 ± 0.6 (i = 1); 11.0 ± 0.8, 33 ± 3, −75 ± 10 (i = 2); 20.6 ± 1.9, 32.4 ± 0.2, −72.9 ± 0.6 (i = 3). The trend in reactivity (k2 > k1), a small labilizing effect of the coordinated hydroxo group (k3/k2 < 2), and substantially low values of ΔS# suggest that the mechanism of aqua ligand substitution of the diaqua, and aqua‐hydroxo complexes is most likely associative interchange (Ia). No evidence for the formation of the O‐bonded sulphito complex and the ligand isomerization in the sulphito complex, (MnIII‐OSO2 → MnIII‐SO3), ensures the selectivity of the MnIII centre toward the S‐end of the SIV species. The monosulphito complex further undergoes slow redox reaction in the presence of excess sulphite to produce MnII, S2O62− and SO42−. The formation of dithionate is a consequence of the fast dimerization of the SO3−. generated in the rate determining step and also SO42− formation is attributed to the fast scavenging of the SO3−. by the MnIII species via a redox path. The internal reduction of the MnIII centre in the monosulphito complex is insignificant. The redox reaction of the monosulphitomanganese(III) complex operates via two major paths, one involving HSO3− and the other SO32−. The electron transfer is believed to be outersphere type. The substantially negative values of activation entropies (ΔS# = −(1.3 ± 0.2) × 102 and −(1.6 ± 0.2) × 102 J K−1 mol−1 for the paths involving HSO3− and SO32− respectively) reflect a considerable degree of ordering of the reactants in the act of electron transfer. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 627–635, 1999  相似文献   

19.
The reaction of [Pd(CH3CN)2Cl2] with N ‐functional group‐substituted 2‐iminomethylpyrrole‐based ligands, namely N 1‐((1H‐pyrrol‐2‐yl)methylene)‐N 3,N 3‐dimethylpropane‐1,3‐diamine (LA), N 1‐((1H‐pyrrol‐2‐yl)methylene)‐N 3‐methyl‐N 3‐phenylpropane‐1,3‐diamine (LB), N ‐((1H‐pyrrol‐2‐yl)methylene)‐3‐(methylthio)propan‐1‐amine (LC) and N ‐((1H‐pyrrol‐2‐yl)methylene)‐3‐methoxypropan‐1‐amine (LD), resulted in [Ln PdCl] (Ln  = LA–LD) complexes in high yield via N─H bond activation of pyrrole moiety without use of base. [Ln PdCl] existed as monomeric four‐coordinated complexes with slightly distorted square planar geometries around the palladium metal center. The ligands show N ,N ′,X ‐tridentate binding mode to the palladium metal center to give two fused ring metallacycles. [LBPdCl] gave the highest activity (3.29 × 105 g PMMA (mol Pd)−1 h−1) for a methyl methacrylate (MMA) polymerization in the presence of modified methylaluminoxane at 60 °C compared to the other Pd(II) analogues, and resulted in PMMA with higher molecular weight (M w = 7.16 × 105 g mol−1) and narrower polydispersity index. Syndiotactic‐enriched PMMA resulted in all cases.  相似文献   

20.
In the title coordination polymer, [Zn2(C14H8N2O4)2(C12H10N2)]n, the asymmetric unit contains one ZnII cation, two halves of 2,2′‐(diazene‐1,2‐diyl)dibenzoate anions (denoted L2−) and half of a 1,2‐bis(pyridin‐4‐yl)ethene ligand (denoted bpe). The three ligands lie across crystallographic inversion centres. Each ZnII centre is four‐coordinated by three O atoms of bridging carboxylate groups from three L2− ligands and by one N atom from a bpe ligand, forming a tetrahedral coordination geometry. Two ZnII atoms are bridged by two carboxylate groups of L2− ligands, generating a [Zn2(CO2)2] ring. Each loop serves as a fourfold node, which links its four equivalent nodes via the sharing of four L2− ligands to form a two‐dimensional [Zn2L4]n net. These nets are separated by bpe ligands acting as spacers, producing a three‐dimensional framework with a 4664 topology. Powder X‐ray diffraction and solid‐state photoluminescence were also measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号