首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
《Electroanalysis》2018,30(2):274-282
Reduced Graphene oxide/ZnO nanoflowers ( rGO/ZnO‐NFs ) composite has been synthesized in‐situ using asymmetric Zn complex ( 1 ) as a single‐source molecular precursor (SSMP) with GO at 150 °C. The rGO/ZnO‐NFs composite was characterized by PXRD, UV‐vis, SEM, EDX mapping, TEM and SAED pattern to confirm its purity and morphology. The rGO/ZnO‐NFs composite shows uniform distribution of nanoflowers on graphene sheets. The modified glassy carbon electrode ( GCE ) was fabricated by drop wise layering of the rGO/ZnO‐NFs composite at the surface of the GCE without using binder. The binder free modified electrode ( GCE‐rGO/ZnO ) was explored for detection of nitroaromatics such as p‐nitro‐phenol ( p ‐NP ), 2,4‐dinitrophenol ( 2,4‐DNP ), 2,4‐dinitrotoluene ( 2,4‐DNT ) and 2,4,6‐trinitrophenol ( 2,4,6‐TNP ). The fabricated sensor showed remarkable response for the both toxicants and explosives. The LOD, sensitivity and linear range for the studied toxicants and explosives were found to be in a good range: p ‐NP= 0.93 μM, 240 μA mM−1 cm−2 and 0.2–0.9 mM; 2,4‐DNP= 6.2 μM, 203 μA mM−1 cm−2 and 0.1–0.9 mM; 2,4‐DNT= 10 μM, 371 μA mM−1 cm−2 and 0.2–0.9 mM; 2,4,6‐TNP= 16 μM, 514 μA mM−1 cm−2 and 0.2–0.9 mM, respectively.  相似文献   

2.
Pyrene‐containing water‐soluble probes for the fluorescent detection of nitroaromatic compounds (NACs), such as explosive components (2,4‐DNT and 2,4,6‐TNT) and herbicides (2,4‐dinitrocresol, 2,4‐DNOC), in aqueous media are reported. In the probes, the introduction of surface‐active hydrophilic “heads” at the periphery of lipophilic (i.e., hydrophobic) pyrene “tails” resulted in the formation of highly fluorescent micelle‐like aggregates/pre‐associates in aqueous solutions at concentrations of ≤10?5 m . The enhanced fluorescence quenching of the herein reported architectures is achieved in the presence of ultra‐trace amounts of TNT or 2,4‐DNT with values of Stern–Volmer quenching constant close to 1×105 m ?1 and a detection limit as low as 182 ppb. The most hydrophilic probes demonstrated higher response to 2,4‐DNT over TNT. Filter paper test strips impregnated with 1×10?5 m solutions of the probes were able to detect TNT, 2,4‐DNT, and other NACs at levels as low as 50 ppb in water.  相似文献   

3.
The design and fabrication of nanostructured electrode with high activity at low cost are crucial elements in studying the toxicity of environmental pollutants. Here, we develop a combined step of generating Electrochemically Reduced Graphene Oxide (ERGO) nanosheets on the surface of the glassy carbon electrode where an effective seed mediated growth followed by a galvanic exchange process were introduced for the direct growth of Ag core @Pd shell nanorods (Ag@Pd NRDs). The resulting electrode possesses a large surface area, interconnected porous networks, uniform distribution of bimetallic Ag@Pd NRDs with extremely thin size of Pd generation and good electrical conductivity, which are highly desirable for the electrocatalytic reduction of nitroaromatic compounds (NACs). In the fabrication step, the shell like Cu at the bimetallic NRDs acts as a sacrificial template for forming a thin layer of Pd at Ag NRDs surface by redox replacement reaction. Thus, the resultant Ag@Pd NRDs on ERGO modified electrode was profoundly tested for the electrochemical sensing of NACs with high sensitivity, selectivity and a very low detection limit of 1.8×10?11 M. Differential Pulse Voltammetry (DPV) was used to study the linear range of 4‐nitroaniline (4‐NA) between 1.0×10?9 M and 1.2×10?8 M. The modified electrode exhibits better reproducibility and long term stability. In addition, the modified electrode out performed well in the real sample analysis containing NACs in the presence of different interfering cations and anions.  相似文献   

4.
Dinitrotoluene (DNT) is a signature material of all nitro‐aromatic explosives including the lethal 2,4,6‐trinitrotoluene (TNT). A clay‐modified reduced graphene oxide (rGO)‐polymer nanocomposite was prepared as sensing electrode for the detection of (DNT) in the aquatic systems. rGO was in situ dispersed in the electro‐conductive N‐doped phenol/formaldehyde polymer and the clay ‘montmorillonite’ was coated on the nanocomposite. The clay, containing iron as one of its mineral components, served as the recognition element for DNT. Tested using electrochemical measurement techniques – cyclic voltammetry and differential pulse voltammetry, the prepared sensing electrode exhibited a low detection limit (0.0016 μM) on signal to noise ratio basis (S/N=3) and excellent linearity (R2=0.997) over 0.02–10 mg L?1 with high sensitivity value (428 μA mM?1 cm?2) for DNT. The electrode showed negligible interference with the gravimetric and volumetric salts commonly present in seawater, and also, with explosive derivatives. The separate tests performed in a simulated seawater confirmed the suitability of the prepared electrode for use in field applications.  相似文献   

5.
《Electroanalysis》2017,29(9):2125-2137
In this study, modified electrodes were constructed with the electropolymerization of metallophthalocyanines (MPcs) carrying redox active metal cations and electropolymerizable substituents. Then these electrodes were tested as selective and sensitive electrochemical pesticide sensors. Incorporation of the redox active Co(II) (CoPc(MOR‐NAF)), Cl–Mn(III) (MnPc(MOR‐NAF)), and Ti(IV)O (TiOPc(MOR‐NAF)) metal cations into Pc cavity increased the redox activity of Pc ring. Moreover, redox active and electropolymerizable 5‐{[(1E)‐(4‐morpholin‐4‐ylphenyl)methylene]amino}‐1‐naphthoxy substituents (MOR‐NAF) on the Pc ring triggered coating of the complexes on the electrode surface with the electropolymerization reactions. Therefore, modified electrodes GCE/MPc(MOR‐NAF) were constructed with the electropolymerizations of MPcs. These electrodes illustrated reasonable redox activity and conductivity for the potential applications in different fields of the electrochemical technologies. Pesticide sensing measurements indicated that changing the metal center of the complexes significantly altered their sensing activities. Among the complexes, GCE/CoPc(MOR‐NAF) electrode behaved as the most sensitive and selective electrode and it sensed the parathion with good selectivity and sensitivity. GCE/CoPc(MOR‐NAF) electrode showed a wider linear range (0.075‐5.75 μmoldm−3) and smaller LOD (0.025 μmoldm−3) and higher sensitivity (3.46 Acm−2M−1) for the parathion sensing. Although GCE/TiOPc(MOR‐NAF) electrode also sensed the parathion with a high sensitivity, its selectivity was poor and the linear range of this sensing was very narrow. Differently GCE/Cl–MnPc(MOR‐NAF) electrode only sensed eserine with reasonably sensitivity.  相似文献   

6.
QU  Yunhe  LIU  ye  ZHOU  Tianshu  SHI  Guoyue  JIN  Litong 《中国化学》2009,27(10):2043-2048
An electrochemical sensor was modified with multi‐wall carbon nanotubes (MWCNT) and molecularly imprinted polymer (MIP) material synthesized with acrylamide and ethylene glycol dimethacrylate (EGDMA) in the presence of 1,3‐dinitrobenzene (DNB) as the template molecule. The MWCNT and MIP layers were successively modified on the surface of a glassy carbon electrode (GCE), of which the MIP film works as an artificial receptor due to its specific molecular recognition sites. The MIP material was characterized by FT‐IR and electrochemical methods of square wave voltammetry (SWV). The interferences of other nitroaromatic compounds (NAC) such as 2,4,6‐trinitrotoluene (TNT), 1,3,5‐trinitrobenzene (TNB) and 2,4‐dinitrotoluene (DNT) to DNB were also investigated by the prepared MIP/MWCNT electrode. Compared with other traditional sensors, the MIP/MWCNT modified electrode shows good selectivity and sensitivity. In addition, the current responses to DNB are linear with the concentration ranging from 4.5×10?8 to 8.5×10?6 mol/L with the detection limits of 2.5×10?8 (?0.58 V) and 1.5×10?8 mol/L (?0.69 V) (S/N=3). The construction process of MIP/MWCNT modified electrode was also studied as well. All results indicate that the MIP/MWCNT modified electrode established an improving way for simple, fast and selective analysis of DNB.  相似文献   

7.
《Electroanalysis》2017,29(5):1258-1266
The nanoporous graphene papers (NGPs) was prepared by the hard‐template method. The Pt−Pd modified NGPs hybrid was prepared by the self‐assembly method. Then a glassy carbon electrode (GCE) modified with Pt−Pd bimetallic nanoparticles‐functionalized nanoporous graphene composite has been prepared for the electrochemical determination of Xanthine (XA). The Pt−Pd/NGPs hybrid was characterized by transmission electron microscopy, scanning electron microscope and X‐ray diffraction. The electrochemical behavior of XA on Pt−Pd/NGPs/GCE was investigated by cyclic voltammetry and amperometric i‐t. The Pt−Pd/NGPs modified electrode exhibited remarkably electrocatalytic activity towards the oxidation reaction of XA in phosphate buffer solution (pH=5.5). Under the optimal conditions, the determination of XA was accomplished by using amperometric i‐t, the linear response range from 1.0×10−5∼1.2×10−4 M. The detection limit was 3.0×10−6 M (S/N=3). The proposed modified electrode showed good sensitivity, selectivity, and stability with applied to determine XA in human urine.  相似文献   

8.
The graphene oxide (GO) nanosheets were produced by chemical conversion of graphite, and were characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR). An electrochemical sensor based on Ni/graphene (GR) composite film was developed by incorporating Ni2+ into the graphene oxide film modified glassy carbon electrode (Ni/GO/GCE) through the electrostatic interactions with negatively charged graphene oxide. The Ni2+/graphene modified glassy carbon electrode (Ni/GR/GCE) was prepared by cyclic voltammetric scanning of Ni/GO/GCE in the potential range from ?1.5 to 0.2 V at 50 mV s?1 for 5 cycles. The electrochemical activity of Ni/GR/GCE was illustrated in 0.10 M NaOH using cyclic voltammetry. The Ni/GR/GCE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple. The introduction of conductive graphene not only greatly facilitates the electron transfer of Ni2+, but also dramatically improves the long-term stability of the sensor by providing the electrostatic interactions. Ni/GR/GCE also shows good electrocatalytic activity toward the oxidation of glucose. The Ni/GR/GCE gives a good linear range over 10 to 2700 μM with a detection limit of 5 μM towards the determination of glucose by amperometry. This sensor keeps over 85% activity towards 0.1 mM glucose after being stored in air for a month, respectively. Furthermore, the modified sensor was successfully applied to the sensitive determination of glucose in blood samples.  相似文献   

9.
A graphene‐based electrochemical sensing platform for sensitive determination of baicalein was constructed by means of pulsed potentiostatic reduction of graphene oxide (GO) on a glassy carbon electrode (GCE). The resulting electrode (ERGO/GCE) was characterized by cyclic voltammetry (CV) and scanning electron microscopy (SEM). The electrochemical behaviors of baicalein at the ERGO/GCE were investigated in detail by CV, chronoamperometry (CA) and chronocoulometry (CC). The experimental results demonstrated that the ERGO/GCE exhibited excellent response toward the redox of baicalein as evidenced by the significant enhancement of redox peak currents (ip) and the decreased peak‐to‐peak separation (ΔEp) in comparison with a bare GCE. Under the optimum experimental conditions, the reduction peak cureent was proportioanal to the baicalein concentration in the range of 5.0 × 10‐9 ~ 5.0 × 10‐7 mol L‐1 with the detection limit of 2.0 × 10‐9 mol L‐1. The proposed method was also applied successfully to determine baicalein in spiked human blood serum samples.  相似文献   

10.
This work presents a sensitive voltammetric method for determination of the flavonoid baicalein by using a thermally reduced graphene oxide (TRGO) modified glassy carbon electrode (GCE) in 100 mM KCl‐10 mM sodium phosphate buffer solution (pH 7.40). The surface morphology and structure of TRGO investigated by atomic force microscopy, FT‐IR spectroscopy and Raman spectroscopy reveal that the TRGO prepared maintained as single or bilayer sheets and with significant edge‐plane‐like defect sites. The TRGO/GCE modified electrode shows more favorable electron transfer kinetics for potassium ferricyanide and potassium ferrocyanide probe molecules, which are important electroactive compounds, compared with bare GCE and GO/GCE electrodes. The electrochemical behaviors of baicalein at the TRGO/GCE were investigated by cyclic voltammetry, suggesting that the TRGO/GCE exhibits excellent electrocatalytic activity to baicalein. Under physiological conditions, the modified electrode showed linear voltammetric response from 10 nM to 10 µM for baicalein, with a detection limit of 6.0 nM. This work demonstrates that the graphene‐modified electrode is a promising tool for electrochemical determination of flavonoid drugs.  相似文献   

11.
《Electroanalysis》2018,30(2):288-295
Methotrexate (MTX) was used as an anti‐cancer drug, but its excessive use can cause serious side effects, it was necessary to monitor MTX in vivo. In this report, DNA was immobilized on a glassy carbon electrode (GCE) modified with graphene oxide (GO) to develop an electrochemical sensor for sensitive determination of MTX for the first time. The adsorptive voltammetric behaviors of MTX on DNA sensor were investigated using differential pulse voltammetry (DPV). The peak current response of guanine in DNA was used as a determination signal of MTX in acetate buffer solution pH 4.6. Voltammetric investigations revealed that the proposed method could determine MTX in the concentration range from 5.5×10−8 to 2.2×10−6 mol L−1 with a lower detection limit of 7.6×109 mol L−1 (S/N=3). The method was applied to detect MTX in human blood serum and diluted urine samples with excellent recoveries of 97.4–102.5 %. Compared with the previous studies, the DNA/GO/GCE electrode constructed by us based on the change rate of guanine current (R%) in DNA, proportionally reflecting the MTX concentration, is simple and sensitive .  相似文献   

12.
A novel and useful method to catalyze the electro‐oxidation of nicotinamide adenine dinucleotide (NADH) over a glassy carbon electrode (GCE) modified with graphene oxide (GO) is presented. Based on the presence of oxygen moieties in GO, which can be easily reduced, an in situ electrochemical generation of reduced graphene oxide (denoted as erGO) applying a sufficient negative potential. A potential of ?1.000 V was selected to generate the erGO/GCE as a pretreatment potential before the detection of NADH. The in situ generated erGO/GCE system produces a decrease in the overpotential of NADH oxidation from +0.720 V to +0.230 V compared with GCE. The process also produced an important increase in current signals. The modified electrode was characterized by scanning electron (SEM) and electrochemical microscopies (SECM), cyclic voltammetry and by Raman spectroscopy. Amperometric detection of NADH via this straightforward electrocatalytic method provides a wide linear range between 10 and 100 μM, a lower detection limit of 0.36 μM and an excellent sensitivity of (1.47±0.09) μA mM?1.  相似文献   

13.
《Electroanalysis》2018,30(1):194-203
Glassy carbon electrode (GCE) modified with L‐cysteine and gold nanoparticles‐reduced graphene oxide (AuNPs‐RGO) composite was fabricated as a novel electrochemical sensor for the determination of Cu2+. The AuNPs‐RGO composite was formed on GCE surface by electrodeposition. The L‐cysteine was decorated on AuNPs by self‐assembly. Physicochemical and electrochemical properties of L‐cysteine/AuNPs‐RGO/GCE were characterized by scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, Raman spectroscopy, X‐ray diffraction, cyclic voltammetry and adsorptive stripping voltammetry. The results validated that the prepared electrode had many attractive features, such as large electroactive area, good electrical conductivity and high sensitivity. Experimental conditions, including electrodeposition cycle, self‐assembly time, electrolyte pH and preconcentration time were studied and optimized. Stripping signals obtained from L‐cysteine/AuNPs‐RGO/GCE exhibited good linear relationship with Cu2+ concentrations in the range from 2 to 60 μg L−1, with a detection limit of 0.037 μg L−1. Finally, the prepared electrode was applied for the determination of Cu2+ in soil samples, and the results were in agreement with those obtained by inductively coupled plasma mass spectrometry.  相似文献   

14.
Tungsten oxide (W) decorated titanium oxide (T) adsorbed onto a graphene (Gr) and modified the glassy carbon electrode for the electrochemical quantification of riboflavin (RF) in edible food and pharmaceuticals. For comparison, nanocomposites are formed using graphene oxide (GO), reduced graphene oxide (rGO) and pure graphite (G) sheets to study the electrochemical activities towards riboflavin. The ternary WTGr modified GCE shows the highest electrocatalytic activity due to synergetic interactions between the metal oxide and graphene. The electrochemical observations are supported by the SEM, HRTEM, XRD, UV-Vis, Zeta potential (ζ) and size data. The sensor shows a wide linear range 20 nM–2.5 μM with a detection limit 25.24 nM and sensitivity (4.249×10−8 A/nM). The fabricated sensor is validated in real samples.  相似文献   

15.
A highly sensitive and selective chemical sensor was prepared based on metallic copper‐copper oxides and zinc oxide decorated graphene oxide modified glassy carbon electrode (Cu?Zn/GO/GCE) through an easily electrochemical method for the quantification of bisphenol A (BPA). The composite electrode was characterized via scanning electron microscopy (SEM), X‐Ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of BPA in Britton‐Robinson (BR) buffer solution (pH 7.1) was examined using cyclic voltammetry (CV). Under optimized conditions, the square wave voltammetry (SWV) response of Cu?Zn/GO/GCE towards BPA indicates two linear relationships within concentrations (3.0 nmol L?1?0.1 μmol L?1 and 0.35 μmol L?1?20.0 μmol L?) and has a low detection limit (0.88 nmol L?1). The proposed electrochemical sensor based on Cu?Zn/GO/GCE is both time and cost effective, has good reproducibility, high selectivity as well as stability for BPA determination. The developed composite electrode was used to detect BPA in various samples including baby feeding bottle, pacifier, water bottle and food storage container and satisfactory results were obtained with high recoveries.  相似文献   

16.
This work presents a sensitive voltammetric method for determination of curcumin by using a electrochemically reduced graphene oxide (ERGO) modified glass carbon electrode (GCE) in 100 mM KCl‐10 mM sodium phosphate buffer solution (pH 7.40). The electrochemical behaviors of curcumin at ERGO/GCE were investigated by cyclic voltammetry, suggesting that the ERGO/GCE exhibits excellent electrocatalytic activity towards curcumin, compared with bare GCE and GO/GCE electrodes. The electrochemical reaction mechanisms of curcumin, demethoxycurcumin and bisdemethoxycurcumin at the ERGO/GCE were also investigated and discussed systematically. Under physiological condition, the modified electrode showed linear voltammetric response from 0.2 μM to 60.0 μM for curcumin, with the detection limit of 0.1 μm. This work demonstrates that the graphene‐modified electrode is a promising strategy for electrochemical determination of biological important phenolic compounds.  相似文献   

17.
A label-free electrochemical DNA biosensor was developed through the attachment of polystyrene-g-soya oil-g-imidazole graft copolymer (PS-PSyIm) onto modified graphene oxide (GO) electrodeposited on glassy carbon electrode (GC). GC/GO electrode was initially functionalised via electrochemical reduction of 4-nitrobenzene diazonium salt, followed by the electrochemical reduction of NO2 to NH2. Subsequent to the electrochemical deposition of gold nanoparticles on modified surface, the attachment of the PS-PSyIm graft copolymer on the resulting electrode was achieved. The interaction of PS-PSyIm with DNA at the bare glassy carbon electrode was studied by cyclic voltammetry technique, and it was found that interaction predominantly takes place through intercalation mode. The selectivity of developed DNA biosensor was also explored by DPV on the basis of considering hybridisation event with non-complementary, one-base mismatched DNA and complementary target DNA sequence. Large decrease in the peak current was found upon the addition of complementary target DNA. The sensitivity of the developed DNA biosensor was also investigated, and detection limit was found to be 1.20 nmol L?1.  相似文献   

18.
The threat from chemical warfare agents (CWAs) imparts an alarming call for the global community not limited to human being but also extends as unprecedented environmental threat, hence, timely detection and degradation in the event of CWAs attack is very crucial. Herein, we describe a hybrid material of 3‐aminopropyltriethoxysilane (APTES) modified graphene oxide (GO) on glassy carbon (GC) electrode along with electrodeposited silver nanodendrimers (AgNDs) for the electrochemical detection and degradation of CWA sulphur mustard (HD). The AgNDs/APTES‐GO hybrid material was characterized by SEM, EDX, BET, TGA, Raman, UV‐Vis, XPS and XRD techniques. The AgNDs/APTES‐GO modified GC electrode was also characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Electrochemical studies indicated presence of electrocatalysis owing to the synergistic effect of AgNDs and GO for sensing CWA HD via reductive dehalogenation. The AgNDs/APTES‐GO modified GC electrode exhibited linearity for CWA HD from 5.3 μM to 42.4 μM. Constant potential electrolysis was performed with modified electrode and degradation products were analysed using GC‐MS, highlighting the great potential of graphene based hybrid material. This new strategy provides an opportunity for the development of “detect and destroy” system for the CWAs and other environmental toxic pollutant, which could help in mitigation of on‐ site events for first responders.  相似文献   

19.
In this article, a carbon disk electrode modified with mesoporous carbon material (CMK‐3) was used in CE with amperometric detection system for the simultaneous determination of four types of important nitroaromatic compounds, including 2,4,6‐trinitrotoluene (TNT), 1,3,5‐trinitrobenzene (TNB), 2,4‐dinitrotoluene (DNT) and 1,3‐dinitrobenzene (DNB). Compared with the bare carbon electrode, the CMK‐3 modified electrode greatly improved the sensitivity at a relatively positive detection potential due to its excellent electrocatalytic activities, high conductivity and large effective surface area. The four analytes could be well separated and detected within 480 s. A good linear response was obtained for TNB, DNB, TNT and DNT from 8.4 to 5.0×103 μg/L, with correlation coefficients higher than 0.9992. And the detection limits were established between 3.0 and 4.7 μg/L for the four investigated nitroaromatic compounds (S/N=3). The CMK‐3‐modified electrode was successfully employed to analyze coking wastewater, tap water and river samples with recoveries in the range of 94.8–109.0%, and RSDs less than 5.0%. The presented results demonstrated that the CMK‐3‐modified carbon electrode used in CE with amperometric detection was of convenient preparation, high sensitivity and good repeatability, which could be employed in the rapid determination of practical samples.  相似文献   

20.
《Electroanalysis》2017,29(4):1154-1160
Oxidation and reduction processes of the insecticide fenthion was comparatively investigated at a reduced graphene oxide modified glassy carbon electrode (RGO‐GCE) and a cyclic renewable silver amalgam film electrode (Hg(Ag)FE) using square wave stripping voltammetry (SWSV). The influence of pH and SW parameters was investigated. The linear concentration ranges were found to be 1 × 10−6 – 2 × 10−5 and 1 × 10−7 – 2 × 10−5 mol L−1 for Hg(Ag)FE and RGO‐GCE, respectively. The detection and quantification limits were calculated as 1.3 × 10−7 and 4.5 × 10−7 mol L−1 for Hg(Ag)FE and 7.6 × 10−9 and 2.5 × 10−8 mol L−1 for RGO‐GCE. Both of the developed electroanalytical methods offer rapid and simple detection of fenthion and were used on spiked tap and river water and apple juice samples. Scanning electron microscopy was used for RGO‐GCE surface characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号