首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Complete assignment of 1H and 13C NMR chemical shifts and J(1H/1H and 1H/19F) coupling constants for 22 1‐phenyl‐1H‐pyrazoles' derivates were performed using the concerted application of 1H 1D and 1H, 13C 2D gs‐HSQC and gs‐HMBC experiments. All 1‐phenyl‐1H‐pyrazoles' derivatives were synthesized as described by Finar and co‐workers. The formylated 1‐phenyl‐1H‐pyrazoles' derivatives were performed under Duff's conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The presence of a highly abundant passive nucleus (Z = 19 F or 31P) allows the simultaneous determination of the magnitude and the sign of up to three different heteronuclear coupling constants from each individual cross‐peak observed in a 2D 1H‐X selHSQMBC spectrum. Whereas J(HZ) and J(XZ) coupling constants are measured from E.COSY multiplet patterns, J(XH) is independently extracted from the complementary IPAP pattern generated along the detected F2 dimension. The incorporation of an extended TOCSY transfer allows the extraction of a complete set of all these heteronuclear coupling constants and their signs for an entire 1H subspin system. 1H‐X/1H‐Y time‐shared versions are also proposed for the simultaneous measurement of five different couplings (J(XH), J(YH), J(XZ), J(YZ), and J(ZH)) for multiple signals in a single NMR experiment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Experiments for 1H‐detected heteronuclear 1H,X correlation spectroscopy with 31P‐relayed coherence transfer are described which allow the indirect detection of δX and nJ(X,P) even in the absence of a direct J(X,H) coupling. The use of these techniques for the assignments of 13C, 15N, and 183W NMR data of organophosphorus compounds is demonstrated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The origin of broadening of 13C(carborane) NMR signals of 1,2‐, 1,7‐ and 1,12‐dicarba‐closo‐dodecaboranes(12) and several diphenylsilyl derivatives has been examined in detail and could be traced only partially to unresolved 13C–11B spin‐spin coupling. Other contributions to the line widths arise from 13C–1H dipole‐dipole interactions and, in particular, from isotope‐induced chemical shifts 1Δ10/11B(13C), observed here for carboranes for the first time. In the case of 1‐diphenylsilyl‐1,2‐dicarba‐closo‐dodecaborane(12), the coupling constant 1J(13C,13C) = 9.3 Hz was measured in natural abundance of 13C. The small value of this coupling constant and its negative sign is predicted by calculations based on optimised structures [B3LYP/6‐311+G(d,p) level of theory] of the parent carboranes and 1‐silyl‐1,2‐dicarba‐closo‐dodecaborane(12) as a model compound [calcd. 1J(13C,13C) = –10.5 Hz]. Calculated coupling constants 1J(13C,11B) are small (<7 Hz), in contrast to published assumptions, and of either sign, whereas 1J(11B,11B) are all positive and range up to 15 Hz.  相似文献   

6.
Various [5,6]pyrano[2,3‐c]pyrazol‐4(1H)‐thiones were synthesized in high yields by treatment of the corresponding [5,6]pyrano[2,3‐c]pyrazol‐4(1H)‐ones with Lawesson's reagent. Detailed NMR spectroscopic studies were undertaken of the title compounds. Complete and unambiguous assignment of chemical shifts (1H, 13C, 15N) and coupling constants (1H,1H; 13C,1H) was achieved by the combined application of various one‐ and two‐dimensional (1D and 2D) NMR spectroscopic techniques. Unequivocal mapping of most 13C,1H spin coupling constants is accomplished by 2D (δ, J) long‐range INEPT spectra with selective excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Ab initio EOM‐CCSD calculations were performed to determine 19F,1H, 19F,15N and 1H,15N spin–spin coupling constants in model complexes FH–NH3 and FH–pyridine as a function of the F—H and F—N distances. The absolute value of 1J(F,H) decreases and that of 1hJ(H,N) increases rapidly along the proton‐transfer coordinate, even in the region of the proton‐shared F—H—N hydrogen bond. In contrast, 2hJ(F,N) remains essentially constant in this region. These results are consistent with the recently reported experimental NMR spectra of FH–collidine which show that 1hJ(H,N) increases and 1J(F,H) decreases, while 2hJ(F,N) remains constant as the temperature of the solution decreases. They suggest that the FH–collidine complex is stabilized by a proton‐shared hydrogen bond over the range of experimental temperatures investigated, being on the traditional side of quasi‐symmetric at high temperatures, and on the ion‐pair side at low temperatures. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Structure elucidation of compounds in the benzisoxazole series ( 1 – 6 ) and naphtho[1,2‐d][1,3]‐ ( 7 – 10 ) and phenanthro[9,10‐d][1,3]oxazole ( 11 – 14 ) series was accomplished using extensive 2D NMR spectroscopic studies including 1H–1H COSY, long‐ range 1H–1H COSY, 1H–13C COSY, gHMQC, gHMBC and gHMQC‐TOCSY experiments. The distinction between oxazole and isoxazole rings was made on the basis of the magnitude of heteronuclear one‐bond 1JC2, H2 (or 1JC3, H3) coupling constants. Complete analysis of the 1H NMR spectra of 11 – 14 was achieved by iterative calculations. Gradient selected gHMQC‐TOCSY spectra of phenanthro[9,10‐d][1,3]oxazoles 11 – 14 were obtained at different mixing times (12, 24, 36, 48 and 80 ms) to identify the spin system where the protons of phenanthrene ring at H‐5, H‐6 and at H‐9 and H‐7 and H‐8 were highly overlapping. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
1H, 13C and two‐dimensional NMR analyses were applied to determine the NMR parameters of 6‐(2′,3′‐dihydro‐1′H‐inden‐1′‐yl)‐1H‐indene. The measurements were accomplished with 0.5 mg of the substance, this quantity being sufficient to determine the chemical shifts of all the H and C atoms, and also the appropriate coupling constants and to give the complete NMR resonance assignments of the molecule. The predicted patterns of the four different H atoms of the methylene groups of the indane structural element coincided completely with the complex patterns in the NMR spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
An unsymmetrical heterocyclic diamine, 1,2‐dihydro‐2‐(4‐aminophenyl)‐4‐[4‐(4‐aminophenoxy)‐4‐phenyl]‐(2H)phthalazin‐1‐one, was synthesized. Its 1H and 13C NMR spectra were completely assigned by utilizing the two‐dimensional heteronuclear 13C–1H multiple‐bond coherence (HMBC) spectroscopy, and heteronuclear 13C–1H one‐bond correlation spectroscopy, homonuclear shift correlation spectroscopy (H,H‐COSY) and rotating frame Overhauser enhancement spectroscopy (ROESY). The structure of the compound was shown to be the phthalazinone rather than the phthalazine ether from cross peaks and chemical shifts of the protons. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The complete 1H NMR chemical shift assignments of 1,2,3,4,5,6,7,8‐octahydroacridine ( 1 ), 1,2,3,4,5,6,7,8‐octahydro‐9‐(3‐pyridyl)acridine ( 2 ), 1,2,3,4,5,6,7,8‐octahydro‐9‐(4‐pyridyl)acridine ( 3 ) and the corresponding N(10)‐oxides 1a , 2a and 3a , respectively, were achieved on the basis of 400 MHz 1H NMR spectra and proton–proton decoupling, HMQC and NOEDIFF experiments. The spectral data for the above compounds provided the first experimental evidence of the difference in the anisotropy effect of the two non‐symmetrical moieties of the pyridine nucleus, and allowed us to ascertain that the shielding effect of the moiety defined by the C(2′)—N—C(6′) atoms is weaker than that of the C(3′)—C(4′)—C(5′) moiety. The 13C NMR spectra of 1 – 3 and 1a – 3a and the effect of N(10)‐oxidation on the 13C NMR chemical shifts are also discussed. The N‐oxidation of 2 and 3 with m‐chloroperbenzoic acid occurred regiospecifically, affording the N(10)‐oxides 2a and 3a free of N(1′)‐oxide isomers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
An NMR study of 11 naturally occurring abietane diterpenoids is described. In addition to one‐dimensional NMR methods, including DPFGSE 1D‐NOE spectra, two‐dimensional shift‐correlated experiments [1H,1H COSY, 1H,13C‐gHSQC 1J(C,H) and 1H,13C‐gHMBC nJ(C,H) (n = 2 and 3)] were used for the complete and unambiguous 1H and 13C chemical shift assignments of these substances. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
N‐acetyl‐4‐nitrotryptophan methyl ester (2), N‐acetyl‐5‐nitrotryptophan methyl ester (3), N‐acetyl‐6‐nitrotryptophan methyl ester (4) and N‐acetyl‐7‐nitrotryptophan methyl ester (5) were synthesized through a modified malonic ester reaction of the appropriate nitrogramine analogs followed by methylation with BF3‐methanol. Assignments of the 1H and 13C NMR chemical shifts were made using a combination of 1H–1H COSY, 1H–13C HETCOR and 1H–13C selective INEPT experiments. Copyright © 2008 Crown in the right of Canada. Published by John Wiley & Sons, Ltd  相似文献   

14.
4‐Fluorinated levoglucosans were synthesised to test if OH???F H‐bonds are feasible even when the O???F distance is increased. The fluorinated 1,6‐anhydro‐β‐D ‐glucopyranoses were synthesised from 1,6 : 3,4‐dianhydro‐β‐D ‐galactopyranose ( 8 ). Treatment of 8 with KHF2 and KF gave 43% of 4‐deoxy‐4‐fluorolevoglucosan ( 9 ), which was transformed into the 3‐O‐protected derivatives 13 by silylation and 15 by silylation, acetylation, and desilylation. 4‐Deoxy‐4‐methyllevoglucosan ( 19 ) and 4‐deoxylevoglucosan ( 21 ) were prepared as reference compounds that can only form a bivalent H‐bond from HO? C(2) to O? C(5). They were synthesised from the iPr3Si‐protected derivative of 8 . Intramolecular bifurcated H‐bonds from HO? C(2) to F? C(4) and O? C(5) of the 4‐fluorinated levoglucosans in CDCl3 solution are evidenced by the 1H‐NMR scalar couplings h1J(F,OH) and 3J(H,OH). The OH???F H‐bond over an O???F distance of ca. 3.0 Å is thus formed in apolar solvents, at least when favoured by the simultaneous formation of an OH???O H‐bond.  相似文献   

15.
A one‐step method was reported for the synthesis of 6‐acetamido‐3‐(N‐(2‐(dimethylamino) ethyl) sulfamoyl) naphthalene‐1‐yl 7‐acetamido‐4‐hydroxynaphthalene‐2‐sulfonate by treating 7‐acetamido‐4‐hydroxy‐2‐naphthalenesulfonyl chloride with equal moles of N, N‐dimethylethylenediamine in acetonitrile in the presence of K2CO3. The chemical structure of the obtained compounds was characterized by MS, FTIR, 1H NMR, 13C NMR, gCOSY, TOCSY, gHSQC, and gHMBC. The chemical shift differences of 1H and 13C being δ 0.04 and 0.2, respectively, were unambiguously differentiated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Unambiguous and complete assignments of 1H and 13C NMR chemical shifts for 15 limonoids, eight of them found in natural sources and seven other synthetic derivatives, are presented. The assignments are based on 2D shift‐correlated [1H,1H‐COSY, 1H,13C‐gHSQC‐1J(C,H), 1H,13C‐gHMBC‐nJ(C,H) (n = 2 and 3)] and NOE experiments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The oxidation of the trans,cis‐( 2 ) and trans,trans‐epoxides ( 3 ) of differently substituted (Z)‐3‐arylidene‐1‐thioflavan‐4‐ones ( 1 ) with dimethyldioxirane (DMD) yielded the appropriate sulfoxides ( 4, 5 ) and sulfones ( 6, 7 ). The structures were elucidated by the extensive application of one‐ and two‐dimensional 1H, 13C and 17O NMR spectroscopy. The conformational analysis was achieved by the application of 3J(C,H) coupling constants, NOESY responses and ab initio calculations. The preferred ground‐state conformers (twisted envelope‐A, twisted envelope‐B for 6 and twisted envelope‐A, envelope‐B for 7 ) were obtained as global minima of the theoretical ab initio MO study and also the examination of the 17O and 13C chemical shifts, calculated for the global minima structures of the sulfone isomers by the GIAO method. Analogous results, obtained for the sulfoxide isomers ( 4, 5 ), not only led to the preferred conformers but also gave evidence for the trans arrangement of the 2‐Ph group and the oxygen atom of the S?O group. Chemical shift differences between the isomers, sulfoxides and sulfones were corroborated by ab initio calculations of the anisotropic effects of the oxirane ring and the S?O and SO2 groups. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The macrocyclic lactam alkaloid (±)‐(2R*,3R*)‐3‐hydroxycelacinnine ( 1 ) derived from spermidine was synthesized via stereoselective epoxide‐ring opening with magnesium azide and cesium carbonate promoted macrocyclization of the ditosylated diamino precursor 12 with 1,4‐dibromobutane in the two key steps (Scheme 2). 1H‐ and 13C‐NMR Signal assignments from COSY, HSQC, and HMBC 2D NMR data of the synthesized 1 were compared with the earlier‐described data of the natural 3‐hydroxycelacinnine. The similarity of their 13C‐NMR spectra point to the correctness of the proposed constitutional formula for natural 3‐hydroxycelacinnine; however, different 1H‐NMR chemical shifts and coupling constants (J(2,3)=9.0 vs. 1.2 Hz, resp.) in the α‐hydroxy‐β‐amino lactam moiety suggest that natural 3‐hydroxycelacinnine is the 2,3‐cis‐epimer of one synthetic (±)‐ 1 .  相似文献   

19.
Unambiguous and complete assignments of 1H and 13C NMR chemical shifts for three structurally complex labadane diterpenoids isolated from Leonotis ocymifolia (leonotin, leonotinin and nepetaefolin) and six other related compounds (hispanolone, 7α‐ and 7β‐hispanols, marrubiin, villenol and andalusol), previously isolated from Labiatae species, are presented. The assignments are based on 2D shift‐correlated [1H, 1H‐COSY, 1H, 13C‐gHSQC–1J(C,H), 1H,13C‐gHMBC–nJ(C,H) (n = 2 and 3)] and DPFGSE 1D‐NOE experiments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
4‐Methyl‐6,8‐dihydroxy‐7H‐benz[de]anthracen‐7‐one was isolated from the sap of Aloe by column chromatography. Its 1H and 13C NMR spectra were completely assigned by utilizing two‐dimensional 1H‐detected heteronuclear one‐bond (HMQC) and multiple‐bond (HMBC) chemical shift correlation experiments together with 1H–1H COSY and DEPT techniques. These techniques were also valuable in assigning the protons and carbons of those benzanthrone compounds which were previously incompletely reported because of the overlap of proton signals. The molecular structure was elucidated by 2D NMR analysis. The spectral properties (MS, IR and UV) are also presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号