首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Polymer-bound Schiff-base ligand (PS-Sal-Cys) was prepared from the polystyrene-bound salicylaldehyde and L-cysteine, its complex (PS-Sal-Cys-Mn) was also synthesized. The polymer ligand and its complex were characterized by infrared spectra (IR), small area X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-atomic emission spectro (ICP-AES). In the presence of complex, cyclohexane can be effectively oxidized by molecular oxygen without a reductant. The major products of the reaction are 2-cyclohexen-1-ol, 2-cyclohexen-1-one, and 2-cyclohexen-1-hydroperoxide, which is different from the typical oxidation of cyclohexene. The mechanism of cyclohexene oxidation is also discussed.  相似文献   

2.
ABSTRACT

The polymer-bound Schiff base ternary cobalt complexes (PS-SalPhe-Co-L (L=Phen, Bipy and 8HQ)) have been prepared from the polymer bound Schiff base ligand, cobalt salt and the second ligand, such as 1,10-phenanthroline(phen), 2,2′-bipyridyl(bipy) and 8-quinolinol(8HQ). The polymer-bound Schiff base ternary cobalt complexes were characterized by the infrared spectra and ICP-AES. The catalytic activity of the complexes has been studied in aerobic epoxidation of long-chain linear aliphatic olefins. It showed that 1-octene or 1-decene can be directly oxidized by molecular oxygen catalyzed by PS-SalPhe-Co-L (L=Phen, Bipy and 8HQ), which afford the 1,2-epoxy alkane.  相似文献   

3.
Poly‐2,3bis[(2‐hydroxy‐3‐methoxyphenyl)methylene]diamino pyridine (PHMPMDAP) that a new Schiff base polymer has been synthesized and characterized by spectroscopy, elemental, and thermal analyses techniques. This azomethine polymer was found to form complexes readily with Cu(II), Zn(II), Co(II), Pb(II), and Fe(II). From IR and UV‐Vis studies, the phenolic oxygen and imine nitrogen of the ligand were found to be the coordination sites. Thermogravimetric analysis (TGA) data indicate the polymer to be more stable than the monomer. The structure of the polymer obtained was confirmed by FT‐IR, UV‐Vis, 13C‐NMR, and 1H‐NMR. Characterization was undertaken by TGA, size exclusion chromatography (SEC), and solubility tests. Also, electrical conductivities of PHMPMDAP and polymer–metal complexes are measured by four probe technique. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The geometric and electronic structure of an oxidized bimetallic Ni complex incorporating two redox‐active Schiff‐base ligands connected via a 1,2‐phenylene linker has been investigated and compared to a monomeric analogue. Information from UV/Vis/NIR spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, electrochemistry, and density functional theory (DFT) calculations provides important information on the locus of oxidation for the bimetallic complex. The neutral bimetallic complex is conformationally dynamic at room temperature, which complicates characterization of the oxidized forms. Comparison to an oxidized monomer analogue 1 provides critical insight into the electronic structure of the oxidized bimetallic complex 2 . Oxidation of 1 provides [ 1 .]+, which is characterized as a fully delocalized ligand radical complex; the spectroscopic signature of this derivative includes an intense NIR band at 4500 cm?1. Oxidation of 2 to the bis‐oxidized form affords a bis‐ligand radical species [ 2 ..]2+. Variable temperature EPR spectroscopy of [ 2 ..]2+ shows no evidence of coupling, and the triplet and broken symmetry solutions afforded by theoretical calculations are essentially isoenergetic. [ 2 ..]2+ is thus best described as incorporating two non‐interacting ligand radicals. Interestingly, the intense NIR intervalence charge transfer band observed for the delocalized ligand‐radical [ 1 .]+ exhibits exciton splitting in [ 2 ..]2+, due to coupling of the monomer transition dipoles in the enforced oblique dimer geometry. Evaluating the splitting of the intense intervalence charge transfer band can thus provide significant geometric and electronic information in less rigid bis‐ligand radical systems. Addition of excess pyridine to [ 2 ..]2+ results in a shift in the oxidation locus from a bis‐ligand radical species to the NiIII/NiIII derivative [ 2 (py)4]2 + , demonstrating that the ligand system can incorporate significant bulk in the axial positions.  相似文献   

5.
A novel tetradentate dianionic Schiff base ligand, N ,N ′‐bis(2‐carboxyphenylimine)‐2,5‐thiophenedicarboxaldhyde (H2L) and some first row d‐transition metal chelates (Co(II), Cu(II), Ni(II) and Zn(II)) were synthesized and characterized using various physicochemical and spectroscopic methods. The spectroscopic data suggested that the parent Schiff base ligand coordinates through both deprotonated carboxylic oxygen and imine nitrogen atoms. The free Schiff base and its metal chelates were screened for their antimicrobial activities for various pathogenic bacteria and fungi using the agar well diffusion method. The antibacterial and antifungal activities of all the newly synthesized compounds are significant compared to the standard drugs ciprofloxacin and nystatin. The antioxidant activities of the compounds were determined by reduction of 1,1‐diphenyl‐2‐picrylhydrazyl and compared with that of vitamin C as a standard. DNA binding ability of the novel Schiff base and its complexes was investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements and thermal denaturation. The obtained results clearly demonstrate that the binding affinity with calf thymus DNA follows the order: Cu(II) complex > Ni(II) complex > Zn(II) complex > Co(II) complex >H2L. Furthermore, the DNA cleavage activity of the newly synthesized ligand and its metal complexes was investigated using supercoiled plasmid DNA (pUC18) gel electrophoresis.  相似文献   

6.
Treatment of a green solution of the five-coordinate octaethylverdoheme, XFeII(OEOP) 1 (X = Cl or Br), with dioxygen results in the formation of a new iron complex of octaethylbiliverdin, 2, within a matter of minutes. The reaction has been monitored by 1H NMR spectroscopy, and the product 2 (X = Cl) has been isolated and examined by X-ray crystallography. The structure of 2 (X = Cl) shows that the iron is five-coordinate with bonds to the four nitrogen atoms of the helical tetrapyrrole ligand and to an axial chloride. Treatment of 2 (X = Cl or Br) with zinc amalgam produces the known iron(III) complex of biliverdin, {FeIII(OEB)}2. The unusual pattern of resonances in the 1H NMR spectrum of 2 and its facile reduction to {FeIII(OEB)}2 indicate that 2 is an oxidized complex that can be formulated by resonance structures involving either an Fe(IV) ion bound to a bilindione trianion or an Fe(III) ion bound to an oxidized, dianionic, radical form of the ligand.  相似文献   

7.
The polystyrene supported glutamic acid Schiff base complex of Mn (Ⅱ) (PS-Sal-Glue-Mn) was prepared with chloromethylated styrene polymer beads,2,4-dihydroxybenzaldehyde, L-glutamic acid and manganese (Ⅱ) acetate tetrahyrate. The polymeric ligand and the complex were characterized by FT-IR, small area X-ray photoelectron spectroscopy (XPS) and ICP-AES. In the presence of the manganese complex, cyclohexene (1) was effectively oxidized by molecular oxygen without reductant. The major products of the reaction were 2-cyclohexen-1-ol (2), 2-cyclohexen-1-one (3) and 2-cyclohexen-1- hydroperoxide (4), which was different with typical oxidation of cyclohexene. The influence of reaction temperature and additive for oxidation had been studied. The selectivity of 2-cyclohexen-1-hydroperoxide varied with reaction time and different additives. The mechanism of cyclohexene oxidation had also been discussed.  相似文献   

8.
The polystyrene supported phenylalanine Schiff base complex of Mn(Ⅱ)(PS-Sal-Phe-Mn)was prepared with chloromethylated styrene polymer beads, 2,4-dihydroxybenzaldehyde,L-phenylalanine and manganese(Ⅱ)acetate tetrahyrate., The polymeric ligand and the complex were characterized by FT-IR,, small area X-ray photoelectron spectroscopy(XPS), and ICP-AES. In the presence of the manganese complex, cyclohexene(1)was effectively oxidized by molecular oxygen without reductant. The major products of the reaction were 2-cyclohexen-1-ol(2),2-cyclohexen-1-one(3)and 2-cyclohexen-1- hydroperoxide(4), which was different with typical oxidation of cyclohexene. The influence of reaction temperature and additive for oxidation had been studied. The selectivity of 2-cyclohexen-l-hydroperoxide varied with reaction time and different additives. The mechanism of cyclohexene oxidation had also been discussed.  相似文献   

9.
1. INTRODUCTION The partial oxidation of alkenes (forming acids, aldehydes and alcohols) is of considerable interest to the chemical industry. In most cases, more than one oxygenated product is formed from a given starting material and all products are susceptible to complete oxidation to carbon dioxide and water [1]. As mimetic oxygen carrier or oxidation catalyst, metalloporphyrins have been widly studied [2~7]. Among the non-porphyrin systems, the manganese complexes of Schiff base are…  相似文献   

10.
While dynamic nuclear polarization (DNP) under magic‐angle spinning (MAS) is generally a powerful method capable of greatly enhancing the sensitivity of solid‐state NMR spectroscopy, hyperpolarization also gives rise to peculiar spin dynamics. Here, we elucidate how specific cross‐relaxation enhancement by active motions under DNP (SCREAM‐DNP) can be utilized to selectively obtain MAS‐NMR spectra of an RNA aptamer in a tightly bound complex with a methyl‐bearing ligand (tetracycline) due to the effective CH3‐reorientation at an optimized sample temperature of approximately 160 K. SCREAM‐DNP can spectrally isolate the complex from non‐bound species in an RNA mixture. This selectivity allows for a competition assay between the aptamer and a mutant with compromised binding affinity. Variations in molecular structure and methyl dynamics, as observed by SCREAM‐DNP, between free tetracycline and RNA‐bound tetracycline are discussed.  相似文献   

11.
The title compound [Co(C5H7O2)2(C13H13P)(CH4O)]PF6·H2O, (I), which was converted from trans‐[Co(acac)2(PMePh2)(H2O)]PF6 (acac is pentane‐2,4‐dionato) by recrystallization from aqueous methanol, has been confirmed as have a coordinated methanol ligand. The molecular structure of the complex cation, trans‐[Co(acac)2(PMePh2)(MeOH)]+, is similar to that of the above aqua complex found in the ClO4 salt [Kashiwabara et al. (1995). Bull. Chem. Soc. Jpn, 68 , 883–888]. The Co—O bond length for the coordinated methanol is 2.059 (3) Å. There is an intermolecular hydrogen bond between the OH group of the coordinated methanol and one of the O atoms of the acac ligands in an adjacent complex cation [O5?O3′ = 2.914 (4) Å], giving a centrosymmetric dimeric dicationic complex.  相似文献   

12.
Mn(II), Co(II), Ni(II) and Cu(II) complexes of 5‐mercapto‐1,2,4‐triazol‐3‐imine‐2′‐hydroxynaphthaline have been synthesized and characterized by elemental analysis, IR, 1H NMR, EI‐mass, UV‐Vis, and ESR (electron spin resonance) spectra, molar conductance, magnetic moment measurements, DC conductivity and thermogravimetric analysis. IR spectra confirm that the ligand molecule existed in both thione and thiole forms. The molar conductance values indicate the complexes are nonelectrolyte. The magnetic moment values of the complexes display paramagnetic behavior. All studies confirm the formation of an octahedral geometry for complex 1 and the other complexes have tetrahedral geometrical structures. The structures of the complexes have also been theoretically studied by using the molecular mechanic calculations by the hyperchem. 8.03 molecular modeling program which confirm the proposed structures. The Schiff‐base ligand and its metal complexes have also been screened for their antimicrobial activities.  相似文献   

13.
The 1,4-bis(2-pyridylmethyl)-1,4-diazacyclononane (dmpdacn) ligand with a N(4)C donor set deprotonates at a CH(2) gamma to an amine under extraordinarily mild conditions (pH 7) and binds as a pentadentate ligand to Co(III) as the [Co(dmpdacn-C)(OH(2))](2+) complex. This complex was characterized by 1D and 2D NMR techniques, and a single-crystal X-ray structure is reported. In an alternative synthesis from Co(II), dmpdacn, and air, the same C-bonded complex is obtained along with a novel hydroxylated Co(III) complex [Co(dmpdacnOH-O)Cl](2+) which has been similarly characterized. Here the carbanion has been oxidized, a C- to O-bonded rearrangement has taken place, and the bound aqua group is replaced by Cl(-). The base hydrolysis kinetics of the hydroxylated Co(III) complex are reported, and mechanisms for this and the unusually facile C-H cleavage and CH(2) oxidation reactions are discussed.  相似文献   

14.
The electronic properties of four divinylanthracene‐bridged diruthenium carbonyl complexes [{RuCl(CO)(PMe3)3}2(μ? CH?CHArCH?CH)] (Ar=9,10‐anthracene ( 1 ), 1,5‐anthracene ( 2 ), 2,6‐anthracene ( 3 ), 1,8‐anthracene ( 4 )) obtained by molecular spectroscopic methods (IR, UV/Vis/near‐IR, and EPR spectroscopy) and DFT calculations are reported. IR spectroelectrochemical studies have revealed that these complexes are first oxidized at the noninnocent bridging ligand, which is in line with the very small ν(C?O) wavenumber shift that accompanies this process and also supported by DFT calculations. Because of poor conjugation in complex 1 , except oxidized 1+ , the electronic absorption spectra of complexes 2+ , 3+ , and 4+ all display the characteristic near‐IR band envelopes that have been deconvoluted into three Gaussian sub‐bands. Two of the sub‐bands belong mainly to metal‐to‐ligand charge‐transfer (MLCT) transitions according to results from time‐dependent DFT calculations. EPR spectroscopy of chemically generated 1+ – 4+ proves largely ligand‐centered spin density, again in accordance with IR spectra and DFT calculations results.  相似文献   

15.
A consecutive radical addition‐coupling reaction induced by spin‐trapping agent is applied to produce degradable multisegmented polymer using α,ω‐dibromo polymer as a precursor. The macroradical generated by single electron transfer process catalyzed by Cu/PMDETA from α,ω‐dibromo polymer can be efficiently captured by 2‐methyl‐2‐nitrosopropane (MNP), which results in nitroxide radical. The in situ formed nitroxide radical immediately undergoes cross‐coupling reaction with polymeric radical, generating block polymer bridged with alkoxyamine moiety. The consecutive radical addition‐coupling reaction generates multisegmented polymer via step‐growth mechanism. Different multisegmented polymers have been prepared from α,ω‐dibromo‐PS, PtBA, and PtBA‐PS‐PtBA. The block number of multisegmented polymers can be tailored by varying the feed ratio of α,ω‐dibromo precursor to MNP. The multisegmented polymer can be degraded in the presence of hydrogen atom donor or air, and the molecular weight distribution transformed back into shape of its original precursor as it is conjugated by alkoxyamine moieties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The long‐chain ligand, 1‐phenyl‐3‐methyl‐4‐heptanoyl‐pyrazol‐5‐one (HL) and its zinc(II) complex ZnL2 were synthesized. The structure and the properties of ZnL2 were characterized by elemental analysis, IR spectroscopy, X‐ray diffraction, and thermogravimetric analysis. The zinc ion is five‐coordinated in a square‐pyramidal environment by four oxygen atoms of the HL ligands in the equatorial plane and one water molecule in the axial position. The water molecule is directly bonded to Zn2+ and involved in intermolecular hydrogen bonding network. The complex and its corresponding ligand were screened in vitro against some strains of the human pathogenic bacteria. The metal complex exhibits higher antibacterial activity than its corresponding ligand. The complex exhibits purple effect emission as the result of fluorescence from the intraligand emission excited state.  相似文献   

17.
[FeFe] hydrogenases are the most active H2 converting catalysts in nature, but their extreme oxygen sensitivity limits their use in technological applications. The [FeFe] hydrogenases from sulfate reducing bacteria can be purified in an O2‐stable state called Hinact. To date, the structure and mechanism of formation of Hinact remain unknown. Our 1.65 Å crystal structure of this state reveals a sulfur ligand bound to the open coordination site. Furthermore, in‐depth spectroscopic characterization by X‐ray absorption spectroscopy (XAS), nuclear resonance vibrational spectroscopy (NRVS), resonance Raman (RR) spectroscopy and infrared (IR) spectroscopy, together with hybrid quantum mechanical and molecular mechanical (QM/MM) calculations, provide detailed chemical insight into the Hinact state and its mechanism of formation. This may facilitate the design of O2‐stable hydrogenases and molecular catalysts.  相似文献   

18.
A new 3D hemidirected mixed‐ligand lead(II) coordination polymer with the ligand 1,2‐di(4‐pyridyl)ethane bpa) and the two metal coordinated anions nitrate and thiocyanate, [Pb2(bpa)2(SCN)3(NO3)]n ( 1 ), has been synthesized and characterized by CHN elemental analysis, IR‐, 1H‐ and 13C NMR spectroscopy. The single crystal X‐ray data of compound 1 show that the complex is a three‐dimensional coordination polymer with two different Pb atoms with stereoactive electron lone pairs and six‐ and five‐coordinate hemidirected geometries, respectively.  相似文献   

19.
Phase separation of polystyrene (PS) and poly(methyl methacrylate) (PMMA) blends was used as a means to segregate PS‐ or PMMA‐functionalized single‐walled carbon nanotubes (SWNTs) in thin films. Dilute solutions (5 wt % in THF) of 1:1 PS/PMMA blends containing the functionalized nanotubes were spin cast and annealed at 180 °C for 12 h. Two different polymer molecular weights were used (Mn = 8000 or Mn = 22,000), and were of approximately equivalent molecular weight to those attached to the surface of the nanotubes. Nanotube functionalization was accomplished using the Cu(I)‐catalyzed [3 + 2] Huisgen cycloaddition, in which alkyne‐decorated nanotubes were coupled with azide‐terminated polymers, resulting in polymer‐SWNT conjugates that were soluble in THF. Characterization of the annealed films by scanning Raman spectroscopy, which utilized the unique Raman fingerprint of carbon nanotubes, enabled accurate mapping of the functionalized SWNTs within the films relative to the two phase‐separated polymers. It was found that nanotube localization within the phase‐separated polymer films was influenced by the type of polymer attached to the nanotube surface, as well as its molecular weight. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 450–458, 2009  相似文献   

20.
Molecules with large enough dipole moments can bind an electron by the dipole field, which has little effect on the molecular core. A molecular anion can be excited to a dipole‐bound state, which can autodetach by vibronic coupling. Autodetachment spectroscopy of a complex anion cooled in a cryogenic ion trap is reported. Vibrational spectroscopy of the dehydrogenated uracil radical is obtained by a dipole‐bound state with partial rotational resolution. Fundamental frequencies for 21 vibrational modes of the uracil radical are reported. The electron affinity of the uracil radical is measured accurately to be 3.4810±0.0006 eV and the binding energy of the dipole‐bound state is measured to be 146±5 cm?1. The rotational temperature of the trapped uracil anion is evaluated to be 35 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号