首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The butylidene‐linker models 1‐[2‐(2,6‐dimethylsulfanyl‐9H‐purin‐9‐yl)‐2‐methylidenepropyl]‐4,6‐bis(methylsulfanyl)‐1H‐pyrazolo[3,4‐d]pyrimidine, C18H20N8S4, (XI), 7,7′‐(2‐methylidenepropane‐1,3‐diyl)bis[3‐methyl‐2‐methylsulfanyl‐3H‐pyrrolo[2,3‐d]pyrimidin‐4(7H)‐one], C20H22N6O2S2, (XIV), and 7‐[2‐(4,6‐dimethylsulfanyl‐1H‐pyrazolo[3,4‐d]pyrimidin‐1‐yl)‐2‐methylidenepropyl]‐3‐methyl‐2‐methylsulfanyl‐3H‐pyrrolo[2,3‐d]pyrimidin‐4(7H)‐one, C19H21N7OS3, (XV), show folded conformations in solution, as shown by 1H NMR analysis. This folding carries over to the crystalline state. Intramolecular π–π interactions are observed in all three compounds, but only (XIV) shows additional intramolecular C—H...π interactions in the solid state. As far as can be established, this is the first report incorporating the pyrrolo[2,3‐d]pyrimidine nucleus for such a study. In addition to the π–π interactions, the crystal structures are also stabilized by other weak intermolecular C—H...S/N/O and/or S...N/S interactions.  相似文献   

2.
A series of new 2‐substituted 3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐ones 8 were synthesized via an aza‐Wittig reaction. Phosphoranylideneamino derivatives 6a or 6b reacted with 4‐chlorophenyl isocyanate to give carbodiimide derivatives 7a or 7b , respectively, which were further treated with amines or phenols to give compounds 8 in the presence of a catalytic amount of EtONa or K2CO3. The structure of 2‐(4‐chlorophenoxy)‐3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐one ( 8j ) was comfirmed by X‐ray analysis.  相似文献   

3.
Pyrazolo[4,3‐d]pyrimidines, pyrazolo[4,3‐d]triazolino[4,3‐a]pyrimidines, 3‐(2‐thiazolyl)thiophenes, thiazolo[3,2‐a]pyridine and pyrazolo[1,5‐a]pyrimidines were synthesized from 2‐[4‐(3‐oxobenzo[f]‐2H‐chromen‐2‐yl)‐1,3‐thiazol‐2‐yl]ethanenitrile. The newly synthesized compounds were elucidated by elemental analysis, spectral data, chemical transformation and alternative synthesis route whenever possible.  相似文献   

4.
1‐Methyl‐3‐propyl‐1H‐pyrazole‐5‐carboxylic acid ( 3 ) was exclusively brominated at the 4‐position by bromine in the dark. Brominated product 8 was then converted into 1‐methyl‐3‐propyl‐1H‐pyrazole‐5‐car‐boxamide 9 by successive treatment with thionyl chloride and ammonium hydroxide. Carboxamide 9 was treated with various aroyl amides under microwave (MW) irradiation to afford 4‐aroylamino‐1‐methyl‐3‐propyl‐1H‐pyrazole‐5‐carboxamides 10‐22 and 5‐aryl‐1‐methyl‐3‐propyl‐1,6‐dihydro‐1H‐pyrazolo[4,3‐d]pyrimidin‐7‐ones 23‐35. The 1H‐pyrazole‐5‐carboxamides 10‐22 were also converted to pyrimidinones 23‐35 either by conventional heating or by MW irradiation. However, MW irradiation method gives excellent yields in very short time.  相似文献   

5.
A series of some fused heterocycles originated from pyrazolopyrimidines were synthesized using 4‐amino1‐methyl‐3‐propyl‐1H‐pyrazole‐5‐carboxamide as a starting material. The nucleophilic substitution reactions with different amino acids followed by cyclization and Suzuki–Miyaura cross‐coupling reactions with different aryl boronic acids of 7‐chloro‐5‐(4‐chlorophenyl)‐1‐methyl‐3‐propyl‐1H‐pyrazolo[4,3‐d]pyrimidine were performed. Also, the oxidative cyclization reactions of 1‐(5‐(4‐chlorophenyl)‐1‐methyl‐3‐propyl‐1H‐pyrazolo[4,3‐d]pyrimidin‐7‐yl)hydrazine with different aldehydes in the presence of diacetoxy iodobenzene are described. All the synthesized compounds were characterized by analytical and spectroscopic methods.  相似文献   

6.
Pyrazolo[4,3‐d]pyrimidines are of interest as potential kinase inhibitors. This article describes the formation of a novel highly conjugated, condensed, centrosymmetric heteroaromatic compound, 4,9‐dichloro‐2,7‐diisopropyl‐1,3,5,5b,6,8,10,10b‐octaazacyclopenta[h,i]aceanthrylene ( 3 ), during the chlorination of 5,7‐dihydroxypyrazolo[4,3‐d]pyrimidine ( 1 ) with phenylphosphonic dichloride. The nucleophilic attack of benzylamine on 3 afforded N‐benzyl‐5‐chloro‐3‐isopropyl‐1H‐pyrazolo[4,3‐d]pyrimidin‐7‐amine ( 6 ), which was further substituted to yield a pyrazolo[4,3‐d]pyrimidine analogue of roscovitine, a well‐known cyclin‐dependent kinase inhibitor.  相似文献   

7.
A series of novel muti‐substituted pyrido[4,3‐d]pyrimidin‐4‐one derivatives 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l were designed and synthesized by the muti‐step reaction. N,S‐acetal 1 reacted with acetyl acetamide in the presence of zinc nitrate to obtain muti‐substituted pyridine 2 , which reacted with triethyl orthoformate to give 8‐cyano‐5‐methyl‐7‐methylthio‐pyrido[4,3‐d]pyrimidin‐4‐one 3 ; the target compounds 5 were obtained in good yields by the oxidation of 3 with H2O2 in a catalytic amount of sodium tungstate then by the substitution with various substituted phenols. Their structures were confirmed by IR, 1H NMR, EI‐MS, and elemental analyses. The preliminary bioassay indicated that some of them displayed moderate herbicidal activity against dicotyledonous weed Brassica campestris L. at the concentration of 100 mg/L. For example, compounds 5a , 5f , and 5g possessed 76.0%, 62.7%, and 60.2% inhibition against B. campestris at the concentration of 100 mg/L. Moreover, 5a exhibited 58.2% inhibition against B. campestris at the concentration of 10 mg/L.  相似文献   

8.
The 1H‐pyrazole‐3‐carboxylic acid 2 , obtained from the furan‐2,3‐dione 1 and N‐Benzylidene‐N'‐(3‐nitrophenyl) hydrazine, was converted via reactions of its acid chloride 3 with various alcohols or N‐nucleo‐philes into the corresponding ester or amide derivatives 4 or 5 , respectively. Nitrile 6 and anilino‐pyrazole acid 7 derivatives of 2 were also obtained by dehydration of 5a in a mixture of SOCl2 with DMF and reduction of 2 with sodium polysulphide, respectively. While cyclocondensation reactions of 2 or 7 with phenyl hydrazine or hydrazine hydrate and 6 with only anhydrous hydrazine lead to derivatives of pyrazolo[3,4‐d]‐pyridazinone 8 and pyrazolo[3,4‐d]pyridazine amine 9 , respectivel. The reaction of 2 with 2‐hydrazinopyri‐dine provided hydrazono‐pyrazole acid derivative 10 , which was decarboxylated to give hydrazono‐pyra‐zole derivative 11 . Pyrazolo[4,3‐d]oxazinone 12 and 2‐quinolyl pyrazolo[3,4‐d]pyridazine 13 derivatives were also prepared by cyclocondensation reactions of 2 with hydroxylamine hydrochloride and 7 with acetaldehyde, respectively.  相似文献   

9.
Pyrazolo‐[3,4‐d]pyrimidine‐4,6‐diones 5 and pyrazolo[4,3‐d]pyrimidine‐5,7‐diones 7 were synthesized by Curtius rearrangement of pyrazolic mono‐esters 2 and 3 followed by hetero‐cyclization via the ureas derivatives 4 and 6 under alkaline conditions.  相似文献   

10.
2‐Amino‐3‐cyano‐4,5,6,7‐tetrahydrobenzo[b]thiophene 1a or 2‐amino‐3‐cyano‐4,7‐di‐ phenyl‐5‐methyl‐4H‐pyrano[2,3‐c]pyrazole 2a reacted with phenylisocyanate in dry pyridine to give 2‐(3‐phenylureido)‐3‐cyanobenzo[b]thiophene 1b or 2‐disubstituted amino‐3‐cyanopyranopyrazole 2b derivative. However, when 1a and 2a were refluxed with carbon disulfide in 10% ethanolic sodium hydroxide solution, they afforded the thieno[2,3‐d]pyrimidin‐2,4‐dithione derivative 5 in the former case, 2,4‐dicyano‐1,3‐bis(dithio carboxamino)cyclobuta‐1,3‐ diene 6 and pyrazolopyranopyrido[2,3‐d]pyrimidin‐ 2,4‐dithione derivative 7 in the latter one. Treatment of 2a with thiourea in refluxing ethanol in the presence of potassium carbonate gave 2,2′‐dithiobispyrimidine derivative 9 (major) in addition to pyranopyrazole derivative 10 and 2,2′‐dithiobis ethoxypyrimidine derivative 11 in minor amounts. The structures of all products were evidenced by microanalytical and spectral data. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:6–11, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20070  相似文献   

11.
Electrophilic heterocyclization of 5‐alkenyl‐1‐methyl‐6‐thioxopyrazolo[3,4‐d]pyrimidin‐4‐ones and 3‐alkenyl‐2‐thioxoquinazoline‐4‐ones under the action of p‐alkoxyphenyltellurium trichloride leads to annulation of thiazoline cycle with formation of 7‐[(p‐alkoxyphenyl)telluromethyl]‐1‐methyl‐6,7‐dihydropyrazolo[3,4‐d][1,3]thiazolo[3,2‐a]pyrimidin‐4(1H)‐ones hydrochlorides and 2‐(p‐alkoxyphenyl)dichlorotelluromethyl‐2,3‐dihydro ‐ 5H‐[1,3]thiazolo[2,3‐b]quinazolin‐5‐ones hydrochlorides. Reduction of salts by the action of excess of sodium sulfite leads to formation of arylhetaryl telluride.  相似文献   

12.
7‐Alkynylated 7‐deazaadenine (pyrrolo[2,3‐d]pyrimidin‐4‐amine) 2′‐deoxyribonucleosides show strong fluorescence which is induced by the 7‐alkynyl side chain (Table 3). A large Stokes shift with an emission around 400 nm is observed when the compound is irradiated at 280 nm. The solvent dependence indicates the formation of a charged transition state. The fluorescence appears when the triple bond is in conjugation with the heterocyclic base. Electron‐donating substituents at the triple bond increase the fluorescence, while electron‐withdrawing residues reduce it. In comparison, the 7‐alkynylated 8‐aza‐7‐deazaadenine (pyrazolo[3,4‐d]pyrimidin‐4‐amine) 2′‐deoxyribonucleosides are rather weakly fluorescent (Table 4). Quantum yields and fluorescence decay times are measured. The synthesis of the 7‐alkynylated 7‐deaza‐2′‐deoxyadenosines and 8‐aza‐7‐deaza‐2′‐deoxyadenosines was performed with 7‐deaza‐2′‐deoxy‐7‐iodoadenosine ( 6 ) or 8‐aza‐7‐deaza‐2′‐deoxy‐7‐iodoadenosine ( 22 ) as starting materials and employing the Pd0‐catalyzed cross‐coupling reaction with the corresponding alkynes (Schemes 1, 4, and 5). Catalytic hydrogenation of the side chain of the unsaturated nucleosides 5 and 17 afforded the 7‐alkyl derivatives 18 and 19 , respectively, which do not show significant fluorescence (Scheme 2).  相似文献   

13.
Formylation of 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine 1a using Vilsmeier–Haack conditions yields 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidin‐6‐ylcarbaldehyde 3a . 5,7‐Diaryl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidines 1b , 1c in this reaction apart from formylation undergo recyclization into 5‐aryl‐1,2,4‐triazolo[1,5‐a]pyrimidin‐6‐ylmethane derivatives 4b , 4c , 5b , 5c , and 6 . The structure of the synthesized compounds was determined on the basis of NMR, IR, and MS spectroscopic data and confirmed by the X‐ray analysis of the 6‐(ethoxy‐phenyl‐methyl)‐5‐phenyl‐[1,2,4]triazolo[1,5‐a]pyrimidine 6 , 5‐phenyl‐6‐(1‐phenyl‐vinyl)‐[1,2,4]triazolo[1,5‐a]pyrimidine 11 , and 7‐phenyl‐6‐(1‐phenyl‐vinyl)‐[1,2,4]triazolo[4,3‐a]pyrimidine 12 .  相似文献   

14.
2‐Benzyl‐ and 2‐aryloxymethyl‐3‐amino‐1‐phenyl‐pyrazolo[3,4‐d]pyrimidine‐4‐ones 5a–f have been synthesized by reacting the corresponding arylacetylamino derivatives 3a–f with hydrazine hydrate. Thionation of compounds 5d–f by action of P2S5 in pyridine yielded 2‐aryloxy‐methyl‐3‐amino‐1‐pheny‐lpyrazolo[3,4‐d]pyrimidin‐4‐thions 6a–c . 2,5‐Diphenyl‐2,3‐dihydro‐1H‐pyrazolo[5′,1′:4:5]pyrazolo[3,4‐d]pyrimidine‐8‐one ( 8 ) was also obtained via reaction of ethyl‐2‐cinnamoylamino‐1‐phenyl‐pyrazole‐4‐car‐boxylate ( 7 ) with hydrazine hydrate. The prepared compounds were screened in vitro for their antimicrobial activity. Some of the tested compounds were found to be active at 100 μg/ml compared with reference compounds (Ampicillin and Trivid) as antibacterial agents and claforan as antifungal agent. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:530–534, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10187  相似文献   

15.
[2‐Alkylthio‐6‐methyl‐4‐oxopyrimidin‐3(4H)‐yl]acetonitriles ( 3‐5 ) treated with sodium methoxide in methanol followed by ammonium chloride were cyclized to 2‐imino‐7‐methyl‐2,3‐dihydroimidazo[1,2‐a]‐pyrimidin‐5(1H)‐ones ( 6‐8 ). Under acid or base‐catalyzed hydrolysis they were converted to 7‐methyl‐imidazo[1,2‐a]pyrimidine‐2,5‐[1H,3H]‐diones ( 9‐11 ), whereas in the reaction with butyl‐ or benzylamine the corresponding 7‐methyl‐2‐(substitutedamino)imidazo[1,2‐a]pyrimidin‐5(3H)‐ones ( 13‐18 ) were produced. The latter were found to exist in two tautomeric forms in CDCl3 solution.  相似文献   

16.
2‐Thioxo‐5,7‐dimethylpyrido[2,3‐d]pyrimidin‐4(3H)‐ones 3 were synthesized by the cyclocondensation of 2‐amino‐3‐carbethoxy‐4,6‐dimethylpyridine 1 with methyl‐N‐aryldithiocarbamates 2 and compared with the condensation between 1 and aryl isothiocyanates 4. When a comparative study of N vs S alkylation of ambident 2‐thioxo‐5,7‐dimethylpyrido[2,3‐d]pyrimidin‐4(3H)‐ones 3 was carried out under liquid‐liquid and solid‐liquid phase transfer conditions using various alkylating agents 5 , the S‐alkylated products 6 were obtained exclusively and selectively.  相似文献   

17.
Chemical transformations of chromone‐3‐carbonitrile ( 1 ) with some substituted hydrazines, namely, thiosemicarbazide, S‐methyl/benzyldithiocarbazate, 7‐chloro‐4‐hydrazinoquinoline, and 3‐hydrazino‐5,6‐diphenyl‐1,2,4‐triazine, led to substituted pyrazoles 2 , 5 – 8 . Ring opening of carbonitrile 1 followed by recyclization with 3‐amino‐1,2,4‐triazole and 2‐aminobenzimidazole gave triazolo[1,5‐a]pyrimidine 9 and pyrimido[1,2‐a]benzimidazole 10 , respectively. Treatment of carbonitrile 1 with some heterocyclic amines produced 2‐amino‐3‐substituted‐chromones 11 and 12 . The novel 3‐hydroxychromeno[4,3‐b]pyrazolo[4,3‐e]pyridin‐5(1H)‐one ( 13 ) was efficiently synthesized from the ring conversion of carbonitrile 1 with cyanoacetohydrazide. A mixture of chromeno[2,3‐b]naphthyridine 14 and chromeno[4,3‐b]pyridine 15 was obtained from base catalyzed transformation of carbonitrile 1 with malononitrile dimer. A diversity of novel annulated chromeno[2,3‐b]pyridines 16 – 22 was also synthesized. Chromeno[2,3‐b]pyrrole‐2‐carboxylate 23 was obtained from the reaction of carbonitrile 1 with ethyl chloroacetate. Structures of the new synthesized products were deduced on the basis of their analytical and spectral data.  相似文献   

18.
A series of 2‐substituted 2H‐thieno[3,4‐e][1,2,4]thiadiazin‐3(4H)‐one 1,1‐dioxides ( 2 ), 2‐substituted 2H‐thieno[2,3‐e][1,2,4]thiadiazin‐3(4H)‐one 1,1‐dioxides ( 3 ), 2‐substituted 4,6‐dihydropyrazolo[4,3‐e]‐[1,2,4]thiadiazin‐3(2H)‐one 1,1‐dioxides ( 4 ), 2‐substituted 2,3‐dihydrooxazolo[3,2‐b]thieno[3,4‐e]‐[1,2,4]thiadiazine 5,5‐dioxides, ( 5 ), 6‐substituted 6,7‐dihydro‐2H‐oxazolo[3,2‐b]pyrazolo[4,3‐e][1,2,4]thia‐diazine 9,9‐dioxides ( 6 ) and 7‐substituted 6,7‐dihydro‐2H‐oxazolo[3,2‐b]pyrazolo[4,3‐e][1,2,4]thiadiazine 9,9‐dioxides ( 7 ) were synthesized as potential psychotropic agents.  相似文献   

19.
The synthesis of the N9‐ and N8‐(β‐D ‐2′‐deoxyribonucleosides) 2 and 10 , respectively, of 8‐aza‐7‐deazapurin‐2‐amine (=1H‐pyrazolo[3,4‐d]pyrimidin‐6‐amine) is described. The fluorescence properties and the stability of the N‐glycosylic bond of 2 were determined and compared with those of the 2′‐deoxyribonucleosides 1 and 3 of purin‐2‐amine and 7‐deazapurin‐2‐amine respectively. From the nucleoside 2 , the phosphoramidite 14 was prepared, and oligonucleotides were synthesized. Duplexes containing compound 1 or 2 are slightly less stable than those containing 2′‐deoxyadenosine, while their CD spectra are rather different. The fluorescence of the nucleosides is strongly quenched (>95%) in single‐stranded as well as in duplex DNA. The residual fluorescence was used to determine the melting profiles, which gave Tm values similar to those determined from the UV melting curves.  相似文献   

20.
The isomeric 2‐substituted‐7(5)‐methyl‐2,3‐dihydro‐5(7)H‐oxazolo[3,2‐a]pyrimidin‐5‐ones 3a‐b and 7‐ones 2a‐b,7a were synthesized by cyclocondensation from the 5‐substituted‐2‐amino‐2‐oxazolines 1a‐b with biselectrophiles. In boiling ethanol, the reaction of 1a‐b with acetylenic esters led to a mixture of 2a‐b,7a with a small amount of (E)‐2‐N‐(2‐ethoxycarbonylethylene)‐5‐substituted‐2‐iminooxazolines 5a‐b . The ring annulation between 1a‐b and diketene gave the 2‐substituted‐7‐hydroxy‐7‐methyl‐2,3,6,7‐tetrahydro‐5H‐oxazolo[3,2‐ a ]pyrimidin‐5‐ones 4a‐b which can be easily dehydrated to provide the 2‐substituted‐7‐methyl‐2,3‐dihydro‐5H‐oxazolo[3,2‐a]pyrimidin‐5‐ones 3a‐b .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号