首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
2.
Dimers composed of benzene (Bz), 1,3,5-triazine (Tz), cyanogen (Cy) and diacetylene (Di) are used to examine the effects of heterogeneity at the molecular level and at the cluster level on pi...pi stacking energies. The MP2 complete basis set (CBS) limits for the interaction energies (E(int)) of these model systems were determined with extrapolation techniques designed for correlation consistent basis sets. CCSD(T) calculations were used to correct for higher-order correlation effects (deltaE(CCSD)(T)(MP2)) which were as large as +2.81 kcal mol(-1). The introduction of nitrogen atoms into the parallel-slipped dimers of the aforementioned molecules causes significant changes to E(int). The CCSD(T)/CBS E(int) for Di-Cy is -2.47 kcal mol(-1) which is substantially larger than either Cy-Cy (-1.69 kcal mol(-1)) or Di-Di (-1.42 kcal mol(-1)). Similarly, the heteroaromatic Bz-Tz dimer has an E(int) of -3.75 kcal mol(-1) which is much larger than either Tz-Tz (-3.03 kcal mol(-1)) or Bz-Bz (-2.78 kcal mol(-1)). Symmetry-adapted perturbation theory calculations reveal a correlation between the electrostatic component of E(int) and the large increase in the interaction energy for the mixed dimers. However, all components (exchange, induction, dispersion) must be considered to rationalize the observed trend. Another significant conclusion of this work is that basis-set superposition error has a negligible impact on the popular deltaE(CCSD)(T)(MP2) correction, which indicates that counterpoise corrections are not necessary when computing higher-order correlation effects on E(int). Spin-component-scaled MP2 (SCS-MP2 and SCSN-MP2) calculations with a correlation-consistent triple-zeta basis set reproduce the trends in the interaction energies despite overestimating the CCSD(T)/CBS E(int) of Bz-Tz by 20-30%.  相似文献   

3.
Stabilisation energies of stacked structures of C(6)H(6)...C(6)X(6) (X = F, Cl, Br, CN) complexes were determined at the CCSD(T) complete basis set (CBS) limit level. These energies were constructed from MP2/CBS stabilisation energies and a CCSD(T) correction term determined with a medium basis set (6-31G**). The former energies were extrapolated using the two-point formula of Helgaker et al. from aug-cc-pVDZ and aug-cc-pVTZ Hartree-Fock energies and MP2 correlation energies. The CCSD(T) correction term is systematically repulsive. The final CCSD(T)/CBS stabilisation energies are large, considerably larger than previously calculated and increase in the series as follows: hexafluorobenzene (6.3 kcal mol(-1)), hexachlorobenzene (8.8 kcal mol(-1)), hexabromobenzene (8.1 kcal mol(-1)) and hexacyanobenzene (11.0 kcal mol(-1)). MP2/SDD** relativistic calculations performed for all complexes mentioned and also for benzene[dot dot dot]hexaiodobenzene have clearly shown that due to relativistic effects the stabilisation energy of the hexaiodobenzene complex is lower than that of hexabromobenzene complex. The decomposition of the total interaction energy to physically defined energy components was made by using the symmetry adapted perturbation treatment (SAPT). The main stabilisation contribution for all complexes investigated is due to London dispersion energy, with the induction term being smaller. Electrostatic and induction terms which are attractive are compensated by their exchange counterparts. The stacked motif in the complexes studied is very stable and might thus be valuable as a supramolecular synthon.  相似文献   

4.
The MP2 complete basis set (CBS) limit for the binding energy of the two low-lying water octamer isomers of D2d and S4 symmetry is estimated at -72.7+/-0.4 kcal/mol using the family of augmented correlation-consistent orbital basis sets of double through quintuple zeta quality. The largest MP2 calculation with the augmented quintuple zeta (aug-cc-pV5Z) basis set produced binding energies of -73.70 (D2d) and -73.67 kcal/mol (S4). The effects of higher correlation, computed at the CCSD(T) level of theory, are estimated at <0.1 kcal/mol. The newly established MP2/CBS limit for the water octamer is reproduced quite accurately by the newly developed all atom polarizable, flexible interaction potential (TTM2-F). The TTM2-F binding energies of -73.21 (D2d) and -73.24 kcal/mol (S4) for the two isomers are just 0.5 kcal/mol (or 0.7%) larger than the MP2/CBS limit.  相似文献   

5.
The popular method of calculating the noncovalent interaction energies at the coupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] theory level in the complete basis set (CBS) limit was to add a CCSD(T) correction term to the CBS second-order Møller-Plesset perturbation theory (MP2). The CCSD(T) correction term is the difference between the CCSD(T) and MP2 interaction energies evaluated in a medium basis set. However, the CCSD(T) calculations with the medium basis sets are still very expensive for systems with more than 30 atoms. Comparatively, the domain-based local pair natural orbital coupled-cluster method [DLPNO-CCSD(T)] can be applied to large systems with over 1,000 atoms. Considering both the computational accuracy and efficiency, in this work, we propose a new scheme to calculate the CCSD(T)/CBS interaction energies. In this scheme, the MP2/CBS term keeps intact and the CCSD(T) correction term is replaced by a DLPNO-CCSD(T) correction term which is the difference between the DLPNO-CCSD(T) and DLPNO-MP2 interaction energies evaluated in a medium basis set. The interaction energies of the noncovalent systems in the S22, HSG, HBC6, NBC10, and S66 databases were recalculated employing this new scheme. The consistent and tight settings of the truncation parameters for DLPNO-CCSD(T) and DLPNO-MP2 in this noncanonical CCSD(T)/CBS calculations lead to the maximum absolute deviation and root-mean-square deviation from the canonical CCSD(T)/CBS interaction energies of less than or equal to 0.28 kcal/mol and 0.09 kcal/mol, respectively. The high accuracy and low cost of this new computational scheme make it an excellent candidate for the study of large noncovalent systems.  相似文献   

6.
Two new prototype delocalized pi[dot dot dot]pi complexes are introduced: the dimers of cyanogen, (N[triple bond]C-C[triple bond]N)(2), and diacetylene, (HC[triple bond]C-C[triple bond]CH)(2). These dimers have properties similar to larger delocalized pi...pi systems such as benzene dimer but are small enough that they can be probed in far greater detail with high accuracy electronic structure methods. Parallel-slipped and T-shaped structures of both cyanogen dimer and diacetylene dimer have been optimized with 15 different procedures. The effects of basis set size, theoretical method, counterpoise correction, and the rigid monomer approximation on the structure and energetics of each dimer have been examined. MP2 and CCSD(T) optimized geometries for all four dimer structures are reported, as well as estimates of the CCSD(T) complete basis set (CBS) interaction energy for every optimized geometry. The data reported here suggest that future optimizations of delocalized pi[dot dot dot]pi clusters should be carried out with basis sets of triple-zeta quality. Larger basis sets and the expensive counterpoise correction to the molecular geometry are not necessary. The rigid monomer approximation has very little effect on structure and energetics of these dimers and may be used without consequence. Due to a consistent cancellation of errors, optimization with the MP2 method leads to CCSD(T)/CBS interaction energies that are within 0.2 kcal mol(-1) of those for structures optimized with the CCSD(T) method. Future studies that aim to resolve structures separated by a few tenths of a kcal mol(-1) should consider the effects of optimization with the CCSD(T) method.  相似文献   

7.
8.
The five singly and doubly hydrogen bonded dimers of formamide are calculated at the correlated level by using resolution of identity M?ller-Plesset second-order perturbation theory (RIMP2) and the coupled cluster with singles, doubles, and perturbative triples [CCSD(T)] method. All structures are optimized with the Dunning aug-cc-pVTZ and aug-cc-pVQZ basis sets. The binding energies are extrapolated to the complete basis set (CBS) limit by using the aug-cc-pVXZ (X = D, T, Q) basis set series. The effect of extending the basis set to aug-cc-pV5Z on the geometries and binding energies is studied for the centrosymmetric doubly N-H...O bonded dimer FA1 and the doubly C-H...O bonded dimer FA5. The MP2 CBS limits range from -5.19 kcal/mol for FA5 to -14.80 kcal/mol for the FA1 dimer. The DeltaCCSD(T) corrections to the MP2 CBS limit binding energies calculated with the 6-31+G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets are mutually consistent to within < or =0.03 kcal/mol. The DeltaCCSD(T) correction increases the binding energy of the C-H...O bonded FA5 dimer by 0.4 kcal/mol or approximately 9% over the distance range +/-0.5 Angstrom relative to the potential minimum. This implies that the ubiquitous long-range C-H...O interactions in proteins are stronger than hitherto calculated.  相似文献   

9.
A systematic theoretical investigation on a series of dimeric complexes formed between some halocarbon molecules and electron donors has been carried out by employing both ab initio and density functional methods. Full geometry optimizations are performed at the Moller-Plesset second-order perturbation (MP2) level of theory with the Dunning's correlation-consistent basis set, aug-cc-pVDZ. Binding energies are extrapolated to the complete basis set (CBS) limit by means of two most commonly used extrapolation methods and the aug-cc-pVXZ (X = D, T, Q) basis sets series. The coupled cluster with single, double, and noniterative triple excitations [CCSD(T)] correction term, determined as a difference between CCSD(T) and MP2 binding energies, is estimated with the aug-cc-pVDZ basis set. In general, the inclusion of higher-order electron correlation effects leads to a repulsive correction with respect to those predicted at the MP2 level. The calculations described herein have shown that the CCSD(T) CBS limits yield binding energies with a range of -0.89 to -4.38 kcal/mol for the halogen-bonded complexes under study. The performance of several density functional theory (DFT) methods has been evaluated comparing the results with those obtained from MP2 and CCSD(T). It is shown that PBEKCIS, B97-1, and MPWLYP functionals provide accuracies close to the computationally very expensive ab initio methods.  相似文献   

10.
The total interaction energies of altogether 15 hydrogen-bonded nucleic acid base pairs containing unusual base tautomers were calculated. The geometry properties of all selected adenine-thymine and guanine-cytosine hydrogen-bonded base pairs enable their incorporation into DNA. Unusual base pairing patterns were compared with Watson-Crick H-bonded structures of the adenine-thymine and guanine-cytosine pairs. The complete basis set (CBS) limit of the MP2 interaction energy and the CCSD(T) correction term, determined as the difference between the CCSD(T) and MP2 interaction energies, was evaluated. Extrapolation to the MP2 CBS limit was done using the aug-cc-pVDZ and aug-cc-pVTZ results, and the CCSD(T) correction term was determined with the 6-31G*(0.25) basis set. Final interaction energies were corrected while taking into account both tautomeric penalization determined at the CBS level and solvation/desolvation free energies. The situation for the adenine-thymine pairs is straightforward, and tautomeric pairs are significantly less stable than the Watson-Crick pair consisting of the canonical forms. In the case of the guanine-cytosine pair, the Watson-Crick structure made by canonical forms is again the most stable. The other two structures are, however, energetically rather similar (by 5 and 6 kcal/mol), which provides a very small but non-negligible chance of detecting these structures in the DNA double helix (1:5000). Due to the fact that DNA bases and base pairs incorporated into DNA are solvated less favorably than in isolated systems, this probability represents the very upper limit. The results clearly show how precisely the canonical building blocks of DNA molecules were chosen and how well their stability is maintained.  相似文献   

11.
MP2 and CCSD(T) complete basis set (CBS) limit interaction energies and geometries for more than 100 DNA base pairs, amino acid pairs and model complexes are for the first time presented together. Extrapolation to the CBS limit is done by using two-point extrapolation methods and different basis sets (aug-cc-pVDZ - aug-cc-pVTZ, aug-cc-pVTZ - aug-cc-pVQZ, cc-pVTZ - cc-pVQZ) are utilized. The CCSD(T) correction term, determined as a difference between CCSD(T) and MP2 interaction energies, is evaluated with smaller basis sets (6-31G** and cc-pVDZ). Two sets of complex geometries were used, optimized or experimental ones. The JSCH-2005 benchmark set, which is now available to the chemical community, can be used for testing lower-level computational methods. For the first screening the smaller training set (S22) containing 22 model complexes can be recommended. In this case larger basis sets were used for extrapolation to the CBS limit and also CCSD(T) and counterpoise-corrected MP2 optimized geometries were sometimes adopted.  相似文献   

12.
Stacking energies in low-energy geometries of pyrimidine, uracil, cytosine, and guanine homodimers were determined by the MP2 and CCSD(T) calculations utilizing a wide range of split-valence, correlation-consistent, and bond-functions basis sets. Complete basis set MP2 (CBS MP2) stacking energies extrapolated using aug-cc-pVXZ (X = D, T, and for pyrimidine dimer Q) basis sets equal to -5.3, -12.3, and -11.2 kcal/mol for the first three dimers, respectively. Higher-order correlation corrections estimated as the difference between MP2 and CCSD(T) stacking energies amount to 2.0, 0.7, and 0.9 kcal/mol and lead to final estimates of the genuine stacking energies for the three dimers of -3.4, -11.6, and -10.4 kcal/mol. The CBS MP2 stacking-energy estimate for guanine dimer (-14.8 kcal/mol) was based on the 6-31G(0.25) and aug-cc-pVDZ calculations. This simplified extrapolation can be routinely used with a meaningful accuracy around 1 kcal/mol for large aromatic stacking clusters. The final estimate of the guanine stacking energy after the CCSD(T) correction amounts to -12.9 kcal/mol. The MP2/6-31G(0.25) method previously used as the standard level to calculate aromatic stacking in hundreds of geometries of nucleobase dimers systematically underestimates the base stacking by ca. 1.0-2.5 kcal/mol per stacked dimer, covering 75-90% of the intermolecular correlation stabilization. We suggest that this correction is to be considered in calibration of force fields and other cheaper computational methods. The quality of the MP2/6-31G(0.25) predictions is nevertheless considerably better than suggested on the basis of monomer polarizability calculations. Fast and very accurate estimates of the MP2 aromatic stacking energies can be achieved using the RI-MP2 method. The CBS MP2 calculations and the CCSD(T) correction, when taken together, bring only marginal changes to the relative stability of H-bonded and stacked base pairs, with a slight shift of ca. 1 kcal/mol in favor of H-bonding. We suggest that the present values are very close to ultimate predictions of the strength of aromatic base stacking of DNA and RNA bases.  相似文献   

13.
Hydrogen-bonded nucleic acids base pairs substantially contribute to the structure and stability of nucleic acids. The study presents reference ab initio structures and interaction energies of selected base pairs with binding energies ranging from -5 to -47 kcal/mol. The molecular structures are obtained using the RI-MP2 (resolution of identity MP2) method with extended cc-pVTZ basis set of atomic orbitals. The RI-MP2 method provides results essentially identical with the standard MP2 method. The interaction energies are calculated using the Complete Basis Set (CBS) extrapolation at the RI-MP2 level. For some base pairs, Coupled-Cluster corrections with inclusion of noniterative triple contributions (CCSD(T)) are given. The calculations are compared with selected medium quality methods. The PW91 DFT functional with the 6-31G basis set matches well the RI-MP2/CBS absolute interaction energies and reproduces the relative values of base pairing energies with a maximum relative error of 2.6 kcal/mol when applied with Becke3LYP-optimized geometries. The Becke3LYP DFT functional underestimates the interaction energies by few kcal/mol with relative error of 2.2 kcal/mol. Very good performance of nonpolarizable Cornell et al. force field is confirmed and this indirectly supports the view that H-bonded base pairs are primarily stabilized by electrostatic interactions.  相似文献   

14.
In benchmark-quality studies of non-covalent interactions, it is common to estimate interaction energies at the complete basis set (CBS) coupled-cluster through perturbative triples [CCSD(T)] level of theory by adding to CBS second-order perturbation theory (MP2) a "coupled-cluster correction," δ(MP2)(CCSD(T)), evaluated in a modest basis set. This work illustrates that commonly used basis sets such as 6-31G*(0.25) can yield large, even wrongly signed, errors for δ(MP2)(CCSD(T)) that vary significantly by binding motif. Double-ζ basis sets show more reliable results when used with explicitly correlated methods to form a δ(MP2-F12)(CCSD(T(*))-F12) correction, yielding a mean absolute deviation of 0.11 kcal mol(-1) for the S22 test set. Examining the coupled-cluster correction for basis sets up to sextuple-ζ in quality reveals that δ(MP2)(CCSD(T)) converges monotonically only beyond a turning point at triple-ζ or quadruple-ζ quality. In consequence, CBS extrapolation of δ(MP2)(CCSD(T)) corrections before the turning point, generally CBS (aug-cc-pVDZ,aug-cc-pVTZ), are found to be unreliable and often inferior to aug-cc-pVTZ alone, especially for hydrogen-bonding systems. Using the findings of this paper, we revise some recent benchmarks for non-covalent interactions, namely the S22, NBC10, HBC6, and HSG test sets. The maximum differences in the revised benchmarks are 0.080, 0.060, 0.257, and 0.102 kcal mol(-1), respectively.  相似文献   

15.
Planar H-bonded and stacked structures of guanine...cytosine (G.C), adenine...thymine (A...T), 9-methylguanine...1-methylcytosine (mG...mC), and 9-methyladenine...1-methylthymine (mA...mT) were optimized at the RI-MP2 level using the TZVPP ([5s3p2d1f/3s2p1d]) basis set. Planar H-bonded structures of G...C, mG...mC, and A...T correspond to the Watson-Crick (WC) arrangement, in contrast to mA...mT for which the Hoogsteen (H) structure is found. Stabilization energies for all structures were determined as the sum of the complete basis set limit of MP2 energies and a (DeltaE(CCSD(T)) - DeltaE(MP2)) correction term evaluated with the cc-pVDZ(0.25,0.15) basis set. The complete basis set limit of MP2 energies was determined by two-point extrapolation using the aug-cc-pVXZ basis sets for X = D and T and X = T and Q. This procedure is required since the convergency of the MP2 interaction energy for the present complexes is rather slow, and it is thus important to include the extrapolation to the complete basis set limit. For the MP2/aug-cc-pVQZ level of theory, stabilization energies for all complexes studied are already very close to the complete basis set limit. The much cheaper D-->T extrapolation provided a complete basis set limit close (by less than 0.7 kcal/mol) to the more accurate T-->Q term, and the D-->T extrapolation can be recommended for evaluation of complete basis set limits of more extended complexes (e.g. larger motifs of DNA). The convergency of the (DeltaE(CCSD(T)) - DeltaE(MP2)) term is known to be faster than that of the MP2 or CCSD(T) correlation energy itself, and the cc-pVDZ(0.25,0.15) basis set provides reasonable values for planar H-bonded as well as stacked structures. Inclusion of the CCSD(T) correction is essential for obtaining reliable relative values for planar H-bonding and stacking interactions; neglecting the CCSD(T) correction results in very considerable errors between 2.5 and 3.4 kcal/mol. Final stabilization energies (kcal/mol) for the base pairs studied are very substantial (A...T WC, 15.4; mA...mT H, 16.3; A...T stacked, 11.6; mA...mT stacked, 13.1; G...C WC, 28.8; mG...mC WC, 28.5; G...C stacked, 16.9; mG...mC stacked, 18.0), much larger than published previously. On the basis of comparison with experimental data, we conclude that our values represent the lower boundary of the true stabilization energies. On the basis of error analysis, we expect the present H-bonding energies to be fairly close to the true values, while stacked energies are still expected to be about 10% too low. The stacking energy for the mG...mC pair is considerably lower than the respective H-bonding energy, but it is larger than the mA...mT H-bonding energy. This conclusion could significantly change the present view on the importance of specific H-bonding interactions and nonspecific stacking interactions in nature, for instance, in DNA. Present stabilization energies for H-bonding and stacking energies represent the most accurate and reliable values and can be considered as new reference data.  相似文献   

16.
The MP2 (the second-order M?ller-Plesset calculation) and CCSD(T) (coupled cluster calculation with single and double substitutions with noniterative triple excitations) interaction energies of all-trans n-alkane dimers were calculated using Dunning's [J. Chem. Phys. 90, 1007 (1989)] correlation consistent basis sets. The estimated MP2 interaction energies of methane, ethane, and propane dimers at the basis set limit [EMP2(limit)] by the method of Helgaker et al. [J. Chem. Phys. 106, 9639 (1997)] from the MP2/aug-cc-pVXZ (X=D and T) level interaction energies are very close to those estimated from the MP2/aug-cc-pVXZ (X=T and Q) level interaction energies. The estimated EMP2(limit) values of n-butane to n-heptane dimers from the MP2/cc-pVXZ (X=D and T) level interaction energies are very close to those from the MP2/aug-cc-pVXZ (X=D and T) ones. The EMP2(limit) values estimated by Feller's [J. Chem. Phys. 96, 6104 (1992)] method from the MP2/cc-pVXZ (X=D, T, and Q) level interaction energies are close to those estimated by the method of Helgaker et al. from the MP2/cc-pVXZ (X=T and Q) ones. The estimated EMP2(limit) values by the method of Helgaker et al. using the aug-cc-pVXZ (X=D and T) are close to these values. The estimated EMP2(limit) of the methane, ethane, propane, n-butane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane dimers by the method of Helgaker et al. are -0.48, -1.35, -2.08, -2.97, -3.92, -4.91, -5.96, -6.68, -7.75, and -8.75 kcal/mol, respectively. Effects of electron correlation beyond MP2 are not large. The estimated CCSD(T) interaction energies of the methane, ethane, propane, and n-butane dimers at the basis set limit by the method of Helgaker et al. (-0.41, -1.22, -1.87, and -2.74 kcal/mol, respectively) from the CCSD(T)/cc-pVXZ (X=D and T) level interaction energies are close to the EMP2(limit) obtained using the same basis sets. The estimated EMP2(limit) values of the ten dimers were fitted to the form m0+m1X (X is 1 for methane, 2 for ethane, etc.). The obtained m0 and m1 (0.595 and -0.926 kcal/mol) show that the interactions between long n-alkane chains are significant. Analysis of basis set effects shows that cc-pVXZ (X=T, Q, or 5), aug-cc-pVXZ (X=D, T, Q, or 5) basis set, or 6-311G** basis set augmented with diffuse polarization function is necessary for quantitative evaluation of the interaction energies between n-alkane chains.  相似文献   

17.
Stabilization energies of the H-bonded and stacked structures of a DNA base pair were studied in the crystal structures of adenine-thymine, cytosine-guanine, and adenine-cytosine steps as well as in the 5'-d(GCGAAGC)-3' hairpin (utilizing the NMR geometry). Stabilization energies were determined as the sum of the complete basis set (CBS) limit of MP2 stabilization energies and the Delta E(CCSD(T)) - Delta E(MP2) correction term evaluated with the 6-31G*(0.25) basis set. The CBS limit was determined by a two-point extrapolation using the aug-cc-pVXZ basis sets for X = D and T. While the H-bonding energies are comparable to those of base pairs in a crystal and a vacuum, the stacking energies are considerably smaller in a crystal. Despite this, the stacking is still important and accounts for a significant part of the overall stabilization. It contributes equally to the stability of DNA as does H-bonding for AT-rich DNAs, while in the case of GC-rich DNAs it forms about one-third of the total stabilization. Interstrand stacking reaches surprisingly large values, well comparable to the intrastrand ones, and thus contributes significantly to the overall stabilization. The hairpin structure is characterized by significant stacking, and both guanine...cytosine pairs possess stacking energies larger than 11.5 kcal/mol. A high portion of stabilization in the studied hairpin comes from stacking (similar to that found for AT-rich DNAs) despite the fact that it contains two GC Watson-Crick pairs having very large H-bonding stabilization. The DFT/B3LYP/6-31G** method yields satisfactory values of interaction energies for H-bonded structures, while it fails completely for stacking.  相似文献   

18.
Using the SAPT2 + 3(CCD)δMP2 method in complete basis set (CBS) limit, it is shown that the interactions in the recently studied silane⋯carbene dimers are mainly dispersive in nature. Consequently, slow convergence of dispersion energy also forces slow convergence of the interaction energy. Therefore, obtaining very accurate values requires extrapolation of the correlation part to the CBS limit. The most accurate values obtained at the CCSD(T)/CBS level of theory show that the studied silane⋯carbene dimers are rather weakly bound, with interaction energies ranging from about −1.9 to −1.3 kcal/mol. Comparing to CCSD(T)/CBS, it will be shown that SCS-MP2 and MP2C methods clearly underestimate and methods based on SAPT2+ and having some third-order corrections, as well as the MP2 method, overestimate values of interaction energies. Popular SAPT(DFT) method performs better than SCS-MP2 and MP2C; nevertheless, underestimation is still considerable. The underestimation is slightly quenched if third-order dispersion energy and its exchange counterpart is added to the SAPT(DFT). The closest value of CCSD(T)/CBS has been given by the SAPT2 + (3)(CCD)δMP2 method in quadruple-ζ basis set. © 2019 Wiley Periodicals, Inc.  相似文献   

19.
Hydrogen bonding was studied in 24 pairs of isopropyl alcohol and phenol as one partner, and water and amino-acid mimics (methanol, acetamide, neutral and protonated imidazole, protonated methylalamine, methyl-guanidium cation, and acetate anion) as the other partner. MP2/6-31+G* and MP2/aug-cc-pvtz calculations were conducted in the gas phase and in a model continuum dielectric environment with dielectric constant of 15.0. Structures were optimized in the gas phase with both basis sets, and zero-point energies were calculated at the MP2/6-31+G* level. At the MP2/aug-cc-pvtz level, the BSSE values from the Boys-Bernardi counterpoise calculations amount to 10-20 and 5-10% of the uncorrected binding energies of the neutral and ionic complexes, respectively. The geometry distortion energy upon hydrogen-bond formation is up to 2 kcal/mol, with the exception of the most strongly bound complexes. The BSSE-corrected MP2/aug-cc-pvtz binding energy of -27.56 kcal/mol for the gas-phase acetate...phenol system has been classified as a short and strong hydrogen bond (SSHB). The CH3NH3+...isopropyl alcohol complex with binding energy of -22.54 kcal/mol approaches this classification. The complete basis set limit (CBS) for the binding energy was calculated for twelve and six complexes on the basis of standard and counterpoise-corrected geometry optimizations, respectively. The X...Y distances of the X-H...Y bridges differ by up to 0.03 A as calculated by the two methods, whereas the corresponding CBS energy values differ by up to 0.03 kcal/mol. Uncorrected MP2/aug-cc-pvtz hydrogen-bonding energies are more negative by up to 0.35 kcal/mol than the MP2/CBS values, and overestimate the CCSD(T)/CBS binding energies generally by up to 5% for the eight studied complexes in the gas phase. The uncorrected MP2/aug-cc-pvtz binding energies decreased (in absolute value) by 11-18 kcal/mol for the ionic species and by up to 5 kcal/mol for the neutral complexes when the electrostatic effect of a polarizable model environment was considered. The DeltaECCSD(T) - DeltaEMP2 corrections still remained close to their gas-phase values for four complexes with 0, +/-1 net charges. Good correlations (R2 = 0.918-0.958) for the in-environment MP2/aug-cc-pvtz and MP2/6-31+G* hydrogen-bonding energies facilitate the high-level prediction of these energies on the basis of relatively simple MP2/6-31+G* calculations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号