首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Facile and efficient reduction of graphene oxide (GO) and novel applications of the reduced graphene oxide (RGO) based materials are of current interest. Herein, we report a novel and facile method for the reduction of GO by using a biocompatible reducing agent dithiothreitol (DTT). Stabilization of DTT by the formation of a six‐membered ring with internal disulfide linkage upon oxidation is responsible for the reduction of GO. The reduced graphene oxide is characterized by several spectroscopic and microscopic techniques. Dispersion of RGO in DMF remained stable for several weeks suggesting that the RGO obtained by DTT‐mediated reduction is hydrophobic in nature. This method can be considered for large scale production of good quality RGO. Treatment of RGO with hemin afforded a functional hemin‐reduced graphene oxide (H‐RGO) hybrid material that exhibited remarkable protective effects against the potentially harmful peroxynitrite (PN). A detailed inhibition study on PN‐mediated oxidation and nitration reactions indicate that the interaction between hemin and RGO results in a synergistic effect, which leads to an efficient reduction of PN to nitrate. The RGO also catalyzes the isomerization of PN to nitrate as the RGO layers facilitate the rapid recombination of .NO2 with FeIV=O species. In the presence of reducing agents such as ascorbic acid, the FeIV=O species can be reduced to FeIII, thus helping to maintain the PN reductase cycle.  相似文献   

2.
Characterization of the geometrical and structural characteristics of oxidized Cu area in high resolution is crucial for tracking the change in morphology, exploring interactions between graphene layers and Cu substrates and revealing the mechanism for the orientation-dependent oxidation of Cu. Here, we reported experimental results on nanoscale imaging of natural oxidation of the polycrystalline Cu substrate coated by partial-coverage chemical vapor deposition (CVD)-grown graphene stored in dryer under ambient conditions for up to 10 months. Scanning electron microscope (SEM), together with atomic force microscope (AFM), Raman, and X-ray photoelectron spectroscopy (XPS), was used for systematically studying the morphological and compositional changes at nanoscale during oxidation. The appearance of oxidized Cu substrates could be unambiguously distinguished from the unoxidized regions based on their distinctly different morphologies in SEM images, and the underlying mechanism was discussed in detail. By analyzing a millimeter-seized polycrystalline Cu substrate, we found that the oxidation of polycrystalline Cu substrate depends sensitively on both orientation of graphene layers and Cu substrates. Furthermore, the time-dependent oxidation evolution of Cu substrate was also established, and the oxidation rate was readily determined. The findings reported here will have important implications for developing protection coatings for Cu.  相似文献   

3.
A graphene‐based electrochemical sensing platform for sensitive determination of explosive nitroaromatic compounds (NACs) was constructed by means of electrochemical reduction of graphene oxide (GO) on a glassy carbon electrode (GCE). The electrochemically reduced graphene (ER‐GO) adhered strongly onto the GCE surface with a wrinkled morphology that showed a large active surface area. 2,4‐Dinitrotoluene (2,4‐DNT), as a model analyte, was detected by using stripping voltammetry, which gave a low detection limit of 42 nmol L−1 (signal‐to‐noise ratio=3) and a wide linear range from 5.49×10−7 to 1.1×10−5 M . Further characterizations by electrochemistry, IR, and Raman spectra confirmed that the greatly improved electrochemical reduction signal of DNT on the ER‐GO‐modified GC electrode could be ascribed to the excellent electrocatalytic activity and high surface‐area‐to‐volume ratio of graphene, and the strong π–π stacking interactions between 2,4‐DNT and the graphene surface. Other explosive nitroaromatic compounds including 1,3‐dinitrobenzene (1,3‐DNB), 2,4,6‐trinitrotoluene (TNT), and 1,3,5‐trinitrobenzene (TNB) could also be detected on the ER‐GO‐modified GC electrode at the nM level. Experimental results showed that electrochemical reduction of GO on the GC electrode was a fast, simple, and controllable method for the construction of a graphene‐modified electrode for sensing NACs and other sensing applications.  相似文献   

4.
In this work, we developed a roll‐to‐roll printed poly(3,4‐ethylenedioxythiophene)/polystyrene sulphoanate without graphene oxide (GO) (PEDOT/PSS) and with graphene oxide (PEDOT/PSS/GO) plastic films for the electrochemical determination of carbofuran. Both the PEDOT/PSS and PEDOT/PSS/GO plastic films showed electroactivity towards the oxidation of carbofuran. Incorporation of graphene oxide (GO) improves the electrochemical activity of carbofuran and increased its sensitivity. The printed plastic films were characterized by cyclic voltammetry (CV), linear sweep voltammetry (LSV), surface profilometer, four point probe and atomic force microscopy (AFM). The effects of pH, deposition time, deposition potential and film thickness on the oxidation peak current of carbofuran were investigated. Under the optimized conditions, a dynamic linear range of 1 μM–90 μM with a detection limit of 1.0×10?7 M (S/N=3) were obtained. The printed PEDOT/PSS/GO plastic electrode was applied for the determination of carbofuran in vegetable and fruit samples with recoveries between 94.4 and 101.8 %.  相似文献   

5.
We report an effective method for bulk obtaining exfoliated graphene oxide (GO) solids from their aqueous solutions, which were prepared from nature graphite by an oxidation method. Tyndall effect proved that GO solution has a colloidal nature. Different flocculants were used to coagulate GO colloidal, and it was found that NaOH had the most obvious coagulation effect to GO. Transmission electron microscopy, X‐ray diffraction and atomic force microscopy analysis demonstrated that there were a large number of complete few‐layer GO sheets with thickness of about 0.8 nm, and the surfaces were very smooth, almost free of impurities. Liquid state 13C NMR and Fourier transformation infrared spectra showed the presence of abundant benzene carboxylic, hydroxyl and epoxide groups in the basal planes of GO. The graphene materials reduced from GO solids had good electrical conductivity. Our work explored a simple and effective route to extract GO from their solution, which is the most important to GO and graphene researches and applications.  相似文献   

6.
A natural and artificial distribution of electron transfer activity on glassy carbon electrodes can be observed and quantified by the use of scanning electrochemical microscopy (SECM). A large (sevenfold) spread in rate constant is found for randomly sampled sites on polished, untreated glassy carbon surfaces. Direct-mode oxidation with the SECM tip was used to produce small regions of oxidized carbon on a polished surface. A large increase in electron transfer rate for the Fe(II/III) ion is observed on the locally oxidized carbon surface in comparison to the unoxidized region. Rate constant measurements made along a line profiles the transition from unoxidized to oxidized surfaces. SECM images of defect sites show reaction–rate variations. Rate constants measured at several locations of the defective surface allows discrimination between the kinetic and topographic components of the SECM image. Dedicated to the 80th birthday of Keith B. Oldham  相似文献   

7.
Composites of the Cr3+‐based metal‐organic framework (MIL‐101) and graphene oxide (GO) have been synthesized with different ratios of MIL‐101 and GO. The composites and the parent material MIL‐101 were characterized by X‐ray diffraction, scanning electron microscopy and nitrogen adsorption. The results indicated that the incorporation of large amounts of GO (10 and 20 wt%) almost did not prevent the formation of MIL‐101 units, but had an obvious impact on the size of MIL‐101 crystals. On the contrary, small amounts of GO added (2 and 5 wt%) prevented significantly the proper assembly of MIL‐101 units, thus resulting in a pronounced decrease in the porosities of composites.  相似文献   

8.
The insertion of a graphene layer between cobalt and a substrate modifies the morphology and the oxidation/reduction properties of supported cobalt particles. Co forms a relatively flat structure on ZnO and SiO2, whereas individual Co nanoparticles are formed after graphene coating of these substrates. The graphene layer moderates the formation of cobalt oxide in 5×10?7 mbar O2 and promotes the reduction of oxidized Co in H2 at lower temperature. Angle‐resolved XPS measurements indicate that this is mainly a consequence of the restricted interaction of cobalt with the oxide supports. After the low‐pressure redox treatments, the graphene layer maintains a relatively high quality with a small number of defect sites.  相似文献   

9.
We have designed a new Pt/SnO2/graphene nanomaterial by using L ‐arginine as a linker; this material shows the unique Pt‐around‐SnO2 structure. The Sn2+ cations reduce graphene oxide (GO), leading to the in situ formation of SnO2/graphene hybrids. L ‐Arginine is used as a linker and protector to induce the in situ growth of Pt nanoparticles (NPs) connected with SnO2 NPs and impede the agglomeration of Pt NPs. The obtained Pt/SnO2/graphene composites exhibit superior electrocatalytic activity and stability for the ethanol oxidation reaction as compared with the commercial Pt/C catalyst owing to the close‐connected structure between the Pt NPs and SnO2 NPs. This work should have a great impact on the rational design of future metal–metal oxide nanostructures with high catalytic activity and stability for fuel cell systems.  相似文献   

10.
Microwaves (MWs) are applied to initialize deoxygenation of graphene oxide (GO) in the solid state and at low temperatures (~165 °C). The Fourier‐transform infrared (FTIR) spectra of MW‐reduced graphene oxide (rGO) show a significantly reduced concentration of oxygen‐containing functional groups, such as carboxyl, hydroxyl and carbonyl. X‐ray photoelectron spectra confirm that microwaves can promote deoxygenation of GO at relatively low temperatures. Raman spectra and TGA measurements indicate that the defect level of GO significantly decreases during the isothermal solid‐state MW‐reduction process at low temperatures, corresponding to an efficient recovery of the fine graphene lattice structure. Based on both deoxygenation and defect‐level reduction, the resurgence of interconnected graphene‐like domains contributes to a low sheet resistance (~7.9×104 Ω per square) of the MW‐reduced GO on SiO2‐coated Si substrates with an optical transparency of 92.7 % at ~547 nm after MW reduction, indicating the ultrahigh efficiency of MW in GO reduction. Moreover, the low‐temperature solid‐state MW reduction is also applied in preparing flexible transparent conductive coatings on polydimethylsiloxane (PDMS) substrates. UV/Vis measurements indicate that the transparency of the thus‐prepared MW‐reduced GO coatings on PDMS substrates ranges from 34 to 96 %. Correspondingly, the sheet resistance of the coating ranges from 105 to 109 Ω per square, indicating that MW reduction of GO is promising for the convenient low‐temperature preparation of transparent conductors on flexible polymeric substrates.  相似文献   

11.
Graphene and its graphene‐related counterparts have been considered the future of advanced nanomaterials owing to their exemplary properties. An increase in their potential applications in the biomedical field has led to serious concerns regarding their safety and impact on health. To understand the toxicity profile for a particular type of graphene utilized in a given application, it is important to recognize the differences between the graphene‐related components and correlate their cellular toxicity effects to the attributed physiochemical properties. In this study, the cytoxicity effects of highly hydrogenated graphene (HHG) and its graphene oxide (GO) counterpart on the basis of in vitro toxicological assessments are reported and the effects correlated with the physiochemical properties of the tested nanomaterials. Upon 24 h exposure to the nanomaterials, a dose‐dependent cellular cytotoxic effect was exhibited and the HHG was observed to be more cytotoxic than its GO control. Detailed characterization revealed an extensive C?H sp3 network on the carbon backbone of HHG with few oxygen‐containing groups, as opposed to the presence of large amounts of oxygen‐containing groups on the GO. It is therefore hypothesized that the preferential adsorption of micronutrients on the surface of the HHG nanomaterial by means of hydrophobic interactions resulted in a reduction in the bioavailability of nutrients required for cellular viability. The nanotoxicological profile of highly hydrogenated graphene is assessed for the first time in our study, thereby paving the way for further evaluation of the toxicity risks involved with the utilization of various graphene‐related nanomaterials in the real world.  相似文献   

12.
Graphene is the best‐studied 2D material available. However, its production is still challenging and the quality depends on the preparation procedure. Now, more than a decade after the outstanding experiments conducted on graphene, the most successful wet‐chemical approach to graphene and functionalized graphene is based on the oxidation of graphite. Graphene oxide has been known for more than a century; however, the structure bears variable large amounts of lattice defects that render the development of a controlled chemistry impossible. The controlled oxo‐functionalization of graphene avoids the formation of defects within the σ‐framework of carbon atoms, making the synthesis of specific molecular architectures possible. The scope of this review is to introduce the field of oxo‐functionalizing graphene. In particular, the differences between GO and oxo‐functionalized graphene are described in detail. Moreover analytical methods that allow determining lattice defects and functional groups are introduced followed by summarizing the current state of controlled oxo‐functionalization of graphene.  相似文献   

13.
A facile method for the large‐scale synthesis of SnO2 nanocrystal/graphene composites by using coarse metallic Sn particles and cheap graphite oxide (GO) as raw materials is demonstrated. This method uses simple ball milling to realize a mechanochemical reaction between Sn particles and GO. After the reaction, the initial coarse Sn particles with sizes of 3–30 μm are converted to SnO2 nanocrystals (approximately 4 nm) while GO is reduced to graphene. Composite with different grinding times (1 h 20 min, 2 h 20 min or 8 h 20 min, abbreviated to 1, 2 or 8 h below) and raw material ratios (Sn:GO, 1:2, 1:1, 2:1, w/w) are investigated by X‐ray diffraction, X‐ray photoelectron spectroscopy, field‐emission scanning electron microscopy and transmission electron microscopy. The as‐prepared SnO2/graphene composite with a grinding time of 8 h and raw material ratio of 1:1 forms micrometer‐sized architected chips composed of composite sheets, and demonstrates a high tap density of 1.53 g cm?3. By using such composites as anode material for LIBs, a high specific capacity of 891 mA h g?1 is achieved even after 50 cycles at 100 mA g?1.  相似文献   

14.
Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium‐ion batteries (SIBs) because of the existence of H‐bonding between the layers and ultralow electrical conductivity which impedes the Na+ and e? transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali‐metal‐ion (Li+, Na+, K+)‐functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na‐storage capabilities. Electrochemical tests demonstrated that sodium‐ion‐functionalized GO (GNa) has shown outstanding Na‐storage performance in terms of excellent rate capability and long‐term cycle life (110 mAh g?1 after 600 cycles at 1 A g?1) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na‐storage capabilities of functionalized GO. These calculations have indicated that the Na?O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na‐storage properties among all comparatives functionalized by other alkali metal ions.  相似文献   

15.
We report an electrochemical oxidation route to tunable C/O ratios in the graphene framework, creating enhanced pseudocapacitance with increasing oxygen content. Controlled surface functionalities on graphene enable a high specific capacitance and negligible electric conductivity loss. A specific capacitance of up to 279 F g?1 was achieved for the functionalized graphene at a discharge current of 1 A g?1 in 1 M H2SO4 electrolyte; this capacitance remained as high as 152 F g?1 at 100 A g?1. These values are much higher than those of non‐oxidized graphene. These excellent performances of the functionalized graphene signify the importance of precise control of the surface chemistry of graphene‐based materials.  相似文献   

16.
We studied sensor application of a graphene oxide and hematite (α‐Fe2O3/GO) composite electrode well‐characterized by the SEM and XRD. Through differential pulse voltammetry (DPV), oxidation of dexamethasone sodium phosphate (DSP) was studied at the surface of a glassy carbon electrode (GCE) modified with graphene oxide nanosheets (GO) and the α‐Fe2O3/GO composite. The values of the transfer coefficient (α) and the diffusion coefficient (D) of DSP were 0.5961 and 4.71×10?5 cm2 s?1 respectively. In the linear range of 0.1–50 μM, the detection limit (DL) was 0.076 μM. In the second step, a GCE was modified with α‐Fe2O3/GO composite and the DSP measurement step was repeated to analyzed and compare the effects of hematite nanoparticles present on graphene oxide surfaces. According to the results, α and D were 0.52 and 2.406×10?4 cm2 s?1 respectively and the DL was 0.046 μM in the linear range of 0.1–10.0 μM. The sensor is simple, inexpensive and uses blood serum.  相似文献   

17.
Core‐shell carbon‐coated LiFePO4 nanoparticles were hybridized with reduced graphene (rGO) for high‐power lithium‐ion battery cathodes. Spontaneous aggregation of hydrophobic graphene in aqueous solutions during the formation of composite materials was precluded by employing hydrophilic graphene oxide (GO) as starting templates. The fabrication of true nanoscale carbon‐coated LiFePO4‐rGO (LFP/C‐rGO) hybrids were ascribed to three factors: 1) In‐situ polymerization of polypyrrole for constrained nanoparticle synthesis of LiFePO4, 2) enhanced dispersion of conducting 2D networks endowed by colloidal stability of GO, and 3) intimate contact between active materials and rGO. The importance of conducting template dispersion was demonstrated by contrasting LFP/C‐rGO hybrids with LFP/C‐rGO composites in which agglomerated rGO solution was used as the starting templates. The fabricated hybrid cathodes showed superior rate capability and cyclability with rates from 0.1 to 60 C. This study demonstrated the synergistic combination of nanosizing with efficient conducting templates to afford facile Li+ ion and electron transport for high power applications.  相似文献   

18.
Zenghong Xu  Chun He  Tao Sun  Li Wang 《Electroanalysis》2013,25(10):2339-2344
A highly sensitive thrombin electrochemical aptasensor with Pt nanoparticles, blocking reagent‐horseradish peroxidase (HRP) and inert graphene oxide (GO) as enhancers was successfully fabricated. Firstly, Pt nanoparticles with high surface to volume ratio could increase the amount of the immobilized redox probe hexacyanoferrate nanoparticles (NiHCFNPs) and effectively enhance the electron transfer. Secondly, HRP and Pt nanoparticles with high catalytic activity extremely amplify the electrochemical signal of NiHCFNPs toward H2O2. Lastly, inert graphene oxide (GO) labeled TBA could be used for enlarging the steric hindrance of thrombin. As a result, the aptasensor showed a high sensitivity with a detection limit of 500 fM.  相似文献   

19.
A highly stable proton conductor has been developed from carbon sphere oxide (CSO). Carbon sphere (CS) generated from sucrose was oxidized successfully to CSO using Hummers’ graphite oxidation technique. At room temperature and 90 % relative humidity, the proton conductivity of thin layer CSO on microsized comb electrode was found to be 8.7×10?3 S cm?1, which is higher than that for a similar graphene oxide (GO) sample (3.4×10?3 S cm?1). The activation energy (Ea) of 0.258 eV suggests that the proton is conducted through the Grotthuss mechanism. The carboxyl functional groups on the CSO surface are primarily responsible for transporting protons. In contrast to conventional carbon‐based proton conductors, in which the functional groups decompose around 80 °C, CSO has a stable morphology and functional groups with reproducible proton conductivity up to 400 °C. Even once annealed at different temperatures at high relative humidity, the proton conductivity of CSO remains almost unchanged, whereas significant change is seen with a similar GO sample. After annealing at 100 and 200 °C, the respective proton conductivity of CSO was almost the same, and was about ~50 % of the proton conductivity at room temperature. Carbon‐based solid electrolyte with such high thermal stability and reproducible proton conductivity is desired for practical applications. We expect that a CSO‐based proton conductor would be applicable for fuel cells and sensing devices operating under high temperatures.  相似文献   

20.
The study presents a novel paracetamol (PA) sensor based on Pd nanoparticles (PdNPs) deposited on carboxylated graphene oxide (GO?COOH) and nafion (Nf) modified glassy carbon electrode (GCE). The morphologies of the as prepared composites were characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and fourier transform infrared spectroscopy (FTIR). The experimental results demonstrated that Nf/GO?COOPd displayed excellent electrocatalytic response to the oxidation PA. The linear range was 0.04–800 μM for PA with limit of detection of 0.012 μM and excellent sensitivity of 232.89 μA mM?1 cm?2. By considering the excellent performance of Nf/GO?COOPd composite such as wider linear range, lower detection, better selectivity, repeatability, reproducibility, and storage stability, the prepared composite, especially GO?COOH support, with satisfactory electrocatalytic properties was a promising material for the modification of electrode material in electrochemical sensor and biosensor field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号