首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 681 毫秒
1.
Super‐resolution imaging of live cells over extended time periods with high temporal resolution requires high‐density labeling and extraordinary fluorophore photostability. Herein, we achieve this goal by combining the attributes of the high‐density plasma membrane probe DiI‐TCO and the photostable STED dye SiR‐Tz. These components undergo rapid tetrazine ligation within the plasma membrane to generate the HIDE probe DiI‐SiR. Using DiI‐SiR, we visualized filopodia dynamics in HeLa cells over 25 min at 0.5 s temporal resolution, and visualized dynamic contact‐mediated repulsion events in primary mouse hippocampal neurons over 9 min at 2 s temporal resolution. HIDE probes such as DiI‐SiR are non‐toxic and do not require transfection, and their apparent photostability significantly improves the ability to monitor dynamic processes in live cells at super‐resolution over biologically relevant timescales.  相似文献   

2.
In spite of the wide application potential of 1,2,4,5‐tetrazines, particularly in live‐cell and in vivo imaging, a major limitation has been the lack of practical synthetic methods. Here we report the in situ synthesis of (E)‐3‐substituted 6‐alkenyl‐1,2,4,5‐tetrazine derivatives through an elimination–Heck cascade reaction. By using this strategy, we provide 24 examples of π‐conjugated tetrazine derivatives that can be conveniently prepared from tetrazine building blocks and related halides. These include tetrazine analogs of biological small molecules, highly conjugated buta‐1,3‐diene‐substituted tetrazines, and a diverse array of fluorescent probes suitable for live‐cell imaging. These highly conjugated probes show very strong fluorescence turn‐on (up to 400‐fold) when reacted with dienophiles such as cyclopropenes and trans‐cyclooctenes, and we demonstrate their application for live‐cell imaging. This work provides an efficient and practical synthetic methodology for tetrazine derivatives and will facilitate the application of conjugated tetrazines, particularly as fluorogenic probes for live‐cell imaging.  相似文献   

3.
A new type of “azaphilic addition” reaction of methyl lithium to 3,6-bisalkylthio-1,2,4,5-tetrazines has been discovered. Methyl lithium adds at the tetrazine nitrogen of 1 affording 4 while nitrogen nucleophiles displace tetrazine alkylthio groups at carbon affording 3 . The structures of the N-alkyl products were determined by 1H- and 13C-nmr and uv experiments. Reversing the order of methyl lithium addition caused the formation of a bicyclic tetrazine 6 . Grignard reagents add in the same fashion as methyl lithium.  相似文献   

4.
Substituted cyclopropenes have recently attracted attention as stable “mini‐tags” that are highly reactive dienophiles with the bioorthogonal tetrazine functional group. Despite this interest, the synthesis of stable cyclopropenes is not trivial and their reactivity patterns are poorly understood. Here, the synthesis and comparison of the reactivity of a series of 1‐methyl‐3‐substituted cyclopropenes with different functional handles is described. The rates at which the various substituted cyclopropenes undergo Diels–Alder cycloadditions with 1,2,4,5‐tetrazines were measured. Depending on the substituents, the rates of cycloadditions vary by over two orders of magnitude. The substituents also have a dramatic effect on aqueous stability. An outcome of these studies is the discovery of a novel 3‐amidomethyl substituted methylcyclopropene tag that reacts twice as fast as the fastest previously disclosed 1‐methyl‐3‐substituted cyclopropene while retaining excellent aqueous stability. Furthermore, this new cyclopropene is better suited for bioconjugation applications and this is demonstrated through using DNA templated tetrazine ligations. The effect of tetrazine structure on cyclopropene reaction rate was also studied. Surprisingly, 3‐amidomethyl substituted methylcyclopropene reacts faster than trans‐cyclooctenol with a sterically hindered and extremely stable tert‐butyl substituted tetrazine. Density functional theory calculations and the distortion/interaction analysis of activation energies provide insights into the origins of these reactivity differences and a guide to the development of future tetrazine coupling partners. The newly disclosed cyclopropenes have kinetic and stability advantages compared to previously reported dienophiles and will be highly useful for applications in organic synthesis, bioorthogonal reactions, and materials science.  相似文献   

5.
Click chemistry at a tetrazine core is useful for bioorthogonal labeling and crosslinking. Introduced here are two new classes of doubly clickable s‐aryl tetrazines synthesized by Cu‐catalyzed cross‐coupling. Homocoupling of o‐brominated s‐aryl tetrazines leads to bis(tetrazine)s structurally characterized by tetrazine cores arranged face‐to‐face. [N]8 π‐stacking interactions are essential to the conformation. Upon inverse electron demand Diels–Alder (iEDDA) cycloaddition, the bis(tetrazine)s produce a unique staple structure. The o‐azidation of s‐aryl tetrazines introduces a second proximal intermolecular clickable function that leads to double click chemistry opportunities. The stepwise introduction of fluorophores and then iEDDA cycloaddition, including bioconjugation to antibodies, was achieved on this class of tetrazines. This method extends to (thio)etherification, phosphination, trifluoromethylation and the introduction of various bioactive nitrogen‐based heterocycles.  相似文献   

6.
Discrepancies are noted in the implementation and presentation of the ccCA methodology in a previous publication, “Extensive Theoretical Studies of a New Energetic Material: Tetrazino‐tetrazine‐tetraoxide (TTTO)” by Xinli Song, Jicun Li, Hua Hou, and Baoshan Wang. The enthalpy of formation for TTTO has been re‐evaluated using the correct implementation of the ccCA methodology, demonstrating the results to be comparable to those of other ab initio composite methods. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
A low‐molecular‐weight 18F‐labeled tetrazine derivative was developed as a highly versatile tool for bioorthogonal PET imaging. Prosthetic groups and undesired carrying of 18F through additional steps were evaded by direct 18F‐fluorination of an appropriate tetrazine precursor. Reaction kinetics of the cycloaddition with trans‐cyclooctenes were investigated by applying quantum chemical calculations and stopped‐flow measurements in human plasma; the results indicated that the labeled tetrazine is suitable as a bioorthogonal probe for the imaging of dienophile‐tagged (bio)molecules. In vitro and in vivo investigations revealed high stability and PET/MRI in mice showed fast homogeneous biodistribution of the 18F‐labeled tetrazine that also passes the blood–brain barrier. An in vivo click experiment confirmed the bioorthogonal behavior of this novel tetrazine probe. Due to favorable chemical and pharmacokinetic properties this bioorthogonal agent should find application in bioimaging and biomedical research.  相似文献   

8.
5‐Vinyl‐2′‐deoxyuridine (VdU) is the first reported metabolic probe for cellular DNA synthesis that can be visualized by using an inverse electron demand Diels–Alder reaction with a fluorescent tetrazine. VdU is incorporated by endogenous enzymes into the genomes of replicating cells, where it exhibits reduced genotoxicity compared to 5‐ethynyl‐2′‐deoxyuridine (EdU). The VdU–tetrazine ligation reaction is rapid (k≈0.02 M ?1 s?1) and chemically orthogonal to the alkyne–azide “click” reaction of EdU‐modified DNA. Alkene–tetrazine ligation reactions provide the first alternative to azide–alkyne click reactions for the bioorthogonal chemical labeling of nucleic acids in cells and facilitate time‐resolved, multicolor labeling of DNA synthesis.  相似文献   

9.
Rapid analysis of single and scant cell populations is essential in modern diagnostics, yet existing methods are often limited and slow. Herein, we describe an ultra‐fast, highly efficient cycling method for the analysis of single cells based on unique linkers for tetrazine (Tz)/trans‐cyclooctene (TCO)‐mediated quenching. Surprisingly, the quenching reaction rates were more than 3 orders of magnitude faster (t1/2 <1 s) than predicted. This allowed multi‐cycle staining and immune cell profiling within an hour, leveraging the accelerated kinetics to open new diagnostic possibilities for rapid cellular analyses.  相似文献   

10.
The synthesis of a set of tetrazine‐bearing fluorogenic dyes suitable for intracellular labeling of proteins in live cells is presented. The red excitability and emission properties ensure minimal autofluorescence, while through‐bond energy‐transfer‐based fluorogenicity reduces nonspecific background fluorescence of unreacted dyes. The tetrazine motif efficiently quenches fluorescence of the phenoxazine core, which can be selectively turned on chemically upon bioorthogonal inverse‐electron‐demand Diels–Alder reaction with proteins modified genetically with strained trans‐cyclooctenes.  相似文献   

11.
Fluorescent probes that light-up upon reaction with complementary bioorthogonal reagents are superior tools for no-wash fluorogenic bioimaging applications. In this work, a thorough study is presented on a set of seventeen structurally diverse coumarin–tetrazine probes that produce fluorescent dyes with exceptional turn-on ratios when reacted with trans-cyclooctene (TCO) and bicyclononyne (BCN) dienophiles. In general, formation of the fully aromatic pyridazine-containing dyes resulting from the reaction with BCN was found superior in terms of fluorogenicity. However, evaluation of the probes in cellular imaging experiments revealed that other factors, such as reaction kinetics and good cell permeability, prevail over the fluorescence turn-on properties. The best compound identified in this study showed excellent performance in live cell-labeling experiments and enabled no-wash fluorogenic imaging on a timescale of seconds.  相似文献   

12.
Strain‐promoted inverse electron‐demand Diels–Alder cycloaddition (SPIEDAC) reactions between 1,2,4,5‐tetrazines and strained dienophiles, such as bicyclononynes, are among the fastest bioorthogonal reactions. However, the synthesis of 1,2,4,5‐tetrazines is complex and can involve volatile reagents. 1,2,4‐Triazines also undergo cycloaddition reactions with acyclic and unstrained dienophiles at elevated temperatures, but their reaction with strained alkynes has not been described. We postulated that 1,2,4‐triazines would react with strained alkynes at low temperatures and therefore provide an alternative to the tetrazine cycloaddition reaction for use in in vitro or in vivo labelling experiments. We describe the synthesis of a 1,2,4‐triazin‐3‐ylalanine derivative fully compatible with the fluorenylmethyloxycarbonyl (Fmoc) strategy for peptide synthesis and demonstrate its reaction with strained bicyclononynes at 37 °C with rates comparable to the reaction of azides with the same substrates. The synthetic route to triazinylalanine is readily adaptable to late‐stage functionalization of other probe molecules, and the 1,2,4‐triazine‐SPIEDAC therefore has potential as an alternative to tetrazine cycloaddition for applications in cellular and biochemical studies.  相似文献   

13.
The synthesis and coordination chemistry of a saturated analogue of a “bulky‐yet‐flexible” N‐heterocyclic carbene (NHC) ligand are described. “SIPaul” is a 4,5‐dihydroimidazol‐2‐ylidene ligand with unsymmetrical aryl N‐substituents, and is one of the growing class of “bulky‐yet‐flexible” NHCs that are sufficiently bulky to stabilize catalytic intermediates, but sufficiently flexible that they do not inhibit productive chemistry at the central metal atom. Here, the synthesis of SIPaul.HCl and its complexes with copper, silver, iridium, palladium, and nickel, and its selenourea, are reported. The steric impact of the ligand is quantified using percent buried volume (% Vbur), whereas the electronic properties are probed and quantified using the Tolman Electronic Parameter (TEP) and δSe of the corresponding selenourea. This work shows that despite the often very different performance of saturated versus unsaturated carbenes in catalysis, the effect of backbone saturation on measurable properties is very small.  相似文献   

14.
A series of heteroleptic bis(tridentate) RuII complexes featuring N^C^N‐cyclometalating ligands is presented. The 1,2,3‐triazole‐containing tridentate ligands are readily functionalized with hydrophobic side chains by means of click chemistry and the corresponding cyclometalated RuII complexes are easily synthesized. The performance of these thiocyanate‐free complexes in a dye‐sensitized solar cell was tested and a power conversion efficiency (PCE) of up to 4.0 % (Jsc=8.1 mA cm?2, Voc=0.66 V, FF=0.70) was achieved, while the black dye ((NBu4)3[Ru(Htctpy)(NCS)3]; Htctpy=2,2′:6′,2′′‐terpyridine‐4′‐carboxylic acid‐4,4′′‐dicarboxylate) showed 5.2 % (Jsc=10.7 mA cm?2, Voc=0.69 V, FF=0.69) under comparable conditions. When co‐adsorbed with chenodeoxycholic acid, the PCE of the best cyclometalated dye could be improved to 4.5 % (Jsc=9.4 mA cm?2, Voc=0.65 V, FF=0.70). The PCEs correlate well with the light‐harvesting capabilities of the dyes, while a comparable incident photon‐to‐current efficiency was achieved with the cyclometalated dye and the black dye. Regeneration appeared to be efficient in the parent dye, despite the high energy of the highest occupied molecular orbital. The device performance was investigated in more detail by electrochemical impedance spectroscopy. Ultimately, a promising RuII sensitizer platform is presented that features a highly functionalizable “click”‐derived cyclometalating ligand.  相似文献   

15.
One route to high density and high performance energetic materials based on 1,2,4,5‐tetrazine is the introduction of 2,4‐di‐N‐oxide functionalities. Based on several examples and through theoretical analysis, the strategy of regioselective introduction of these moieties into 1,2,4,5‐tetrazines has been developed. Using this methodology, various new tetrazine structures containing the N‐oxide functionality were synthesized and fully characterized using IR, NMR, and mass spectroscopy, elemental analysis, and single‐crystal X‐ray analysis. Hydrogen peroxide (50 %) was used very effectively in lieu of the usual 90 % peroxide in this system to generate N‐oxide tetrazine compounds successfully. Comparison of the experimental densities of N‐oxide 1,2,4,5‐tetrazine compounds with their 1,2,4,5‐tetrazine precursors shows that introducing the N‐oxide functionality is a highly effective and feasible method to enhance the density of these materials. The heats of formation for all compounds were calculated with Gaussian 03 (revision D.01) and these values were combined with measured densities to calculate detonation pressures (P) and velocities (νD) of these energetic materials (Explo 5.0 v. 6.01). The new oxygen‐containing tetrazines exhibit high density, good thermal stability, acceptable oxygen balance, positive heat of formation, and excellent detonation properties, which, in some cases, are superior to those of 1,3,5‐tritnitrotoluene (TNT), 1,3,5‐trinitrotriazacyclohexane (RDX), and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX).  相似文献   

16.
Screening of different sources of Pd/C shows reagents of highly variable nanoparticle sizes and oxidation states of the metal. Typically, catalysts with higher surface area are viewed as likely to be the more reactive. In this paper a new form of Pd/C, “UC Pd” is described that is shown to contain larger nanoparticles yet it is the most reactive catalyst of those sold commercially for Sonogashira coupling reactions. UC Pd functions efficiently in the absence of a copper co‐catalyst, under very mild and “green” conditions using inexpensive 95 % EtOH at 50 °C. It is also the only form of Pd/C that can be recycled. In side‐by‐side reactions with several commercially available forms of Pd/C, none compete successfully with UC Pd under standardized conditions. Physical data obtained from extensive surface analysis using TEM, XRD, XPS, and CO‐TPD measurements lead to an explanation behind the unique reactivity of this new recyclable form of Pd/C.  相似文献   

17.
Temperature measurements in biology and medical diagnostics, along with sensitive temperature probing of living cells, is of great importance; however, it still faces significant challenges. Herein, a novel “turn‐on” carbon‐dot‐based fluorescent nanothermometry device for spatially resolved temperature measurements in living cells is presented. The carbon nanodots (CNDs) are prepared by a green microwave‐assisted method and exhibit red fluorescence (λem=615 nm) with high quantum yields (15 %). Then, an on–off fluorescent probe is prepared for detecting glutathione (GSH) based on aggregation‐induced fluorescence quenching. Interestingly, the quenched fluorescence could be recovered by increasing temperature and the CNDs–GSH mixture could behave as an off–on fluorescent probe for temperature. Thus, red‐emitting CNDs can be utilized for “turn‐on” fluorescent nanothermometry through the fluorescence quenching and recovery processes, respectively. We employ MC3T3‐E1 cells as an example model to demonstrate the red‐emitting CNDs can function as “non‐contact” tools for the accurate measurement of temperature and its gradient inside a living cell.  相似文献   

18.
Molecules bearing a 4,4‐difluoro‐8‐(aryl)‐1,3,5,7‐tetramethyl‐2,6‐diethyl‐4‐bora‐3a,4a‐diaza‐s‐indacene (bodipy) core and 1‐pyrenyl‐1‐phenyl‐4‐(1‐ethynylpyrene), or 1‐phenyl‐4‐[1‐ethynyl‐(6‐ethynylpyrene)pyrene] units were constructed in a step‐by‐step procedure based on palladium(0)‐promoted cross‐coupling reactions with the required preconstructed modules. X‐ray structures of single crystals reveal a twisted arrangement of the two chromophores. In one case, an almost perfect orthogonal arrangement is found. These dyes are strongly luminescent in solution and display rich electrochemistry in which all redox processes of the bodipy and pyrene fragments are clearly resolved. The absorption spectra indicate that the bodipy and pyrene chromophores are spectrally isolated, thereby inducing a large “virtual” Stokes shift. The latter is realised by efficient transfer of intramolecular excitation energy by the Förster dipole–dipole mechanism. The rate of energy transfer depends on the structure of the dual‐dye system and decreases as the centre‐to‐centre separation increases. The energy transfer efficiency, however, exceeds 90 % in all cases. The linkage of two pyrene residues by an ethyne group leads to a decrease in the energy‐transfer efficiency, with the two polycycles acting as a single chromophore. The directly linked bodipy–pyrene dual dye binds to DNA and operates as an efficient solar concentrator when dispersed in plastic.  相似文献   

19.
Recent developments in fluorescence microscopy call for novel small‐molecule‐based labels with multiple functionalities to satisfy different experimental requirements. A current limitation in the advancement of live‐cell single‐molecule localization microscopy is the high excitation power required to induce blinking. This is in marked contrast to the minimal phototoxicity required in live‐cell experiments. At the same time, quality of super‐resolution imaging depends on high label specificity, making removal of excess dye essential. Approaching both hurdles, we present the design and synthesis of a small‐molecule label comprising both fluorogenic and self‐blinking features. Bioorthogonal click chemistry ensures fast and highly selective attachment onto a variety of biomolecular targets. Along with spectroscopic characterization, we demonstrate that the probe improves quality and conditions for regular and single‐molecule localization microscopy on live‐cell samples.  相似文献   

20.
A solid‐state approach that takes advantage of the ordered 3D arrangement of active secondary building units allows the preparation of new interlocked MOFs that grow hetero‐epitaxially on the crystal faces of a precursor phase that acts as a “topological blueprint”. The synthetic strategy is exemplified by using rigid acetylene‐based ligands to produce highly augmented CuII acetate‐based MOFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号