首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The second coordination sphere constitutes a distinguishing factor in the active site to modulate enzymatic reactivity. To unravel the origin of NO‐to‐N2O reduction activity of non‐heme diiron enzymes, herein we report a strong second‐coordination‐sphere interaction between a conserved Tyr197 and the key iron–nitrosyl intermediate of Tm FDP (flavo–diiron protein), which leads to decreased reaction barriers towards N–N formation and N–O cleavage in NO reduction. This finding supports the direct coupling of diiron dinitrosyl as the N–N formation mode in our QM/MM modeling, and reconciles the mechanistic controversy of external reduction between FDPs and synthetic biomimetics of the iron–nitrosyls. This work highlights the application of QM/MM 57Fe Mössbauer modeling in elucidating the structural features of not only first, but also second coordination spheres of the key transient species involved in NO/O2 activation by non‐heme diiron enzymes.  相似文献   

2.
We demonstrate that the devised incorporation of an alkylamine group into the second coordination sphere of an FeII complex allows to switch its reactivity with H2O2 from the usual formation of FeIII species towards the selective generation of an FeIV‐oxo intermediate. The FeIV‐oxo species was characterized by UV/Vis absorption and Mössbauer spectroscopy. Variable‐temperature kinetic analyses point towards a mechanism in which the heterolytic cleavage of the O?O bond is triggered by a proton transfer from the proximal to the distal oxygen atom in the FeII‐H2O2 complex with the assistance of the pendant amine. DFT studies reveal that this heterolytic cleavage is actually initiated by an homolytic O?O cleavage immediately followed by a proton‐coupled electron transfer (PCET) that leads to the formation of the FeIV‐oxo and release of water through a concerted mechanism.  相似文献   

3.
High‐valent iron‐oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)FeIII(OH) porphyrin ([meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)FeIII(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)FeIV?O(OH) point to the overall associative nature of the process. A pH‐dependence study on the formation of (TMPS)FeIV?O(OH) revealed a very high reactivity of OOH? toward (TMPS)FeIII(OH) in comparison to H2O2. The influence of N‐methylimidazole (N‐MeIm) ligation on both the formation of iron(IV)‐oxo species and their oxidising properties in the reactions with 4‐methoxybenzyl alcohol or 4‐methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)FeIII(H2O)(N‐MeIm) is highly reactive toward H2O2 to form the iron(IV)‐oxo species, (TMPS)FeIV?O(N‐MeIm). The latter species can also be formed in the reaction of (TMPS)FeIII(N‐MeIm)2 with H2O2 or in the direct reaction of (TMPS)FeIV?O(OH) with N‐MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)FeIV?O(OH) and (TMPS)FeIV?O(N‐MeIm) do not display a pronounced effect of the N‐MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH? substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH? or N‐MeIm) in the trans position to the oxo group in the iron(IV)‐oxo species does not significantly affect the activation barriers calculated for C?H dehydrogenation of the selected organic substrates.  相似文献   

4.
This study deals with the unprecedented reactivity of dinuclear non‐heme MnII–thiolate complexes with O2, which dependent on the protonation state of the initial MnII dimer selectively generates either a di‐μ‐oxo or μ‐oxo‐μ‐hydroxo MnIV complex. Both dimers have been characterized by different techniques including single‐crystal X‐ray diffraction and mass spectrometry. Oxygenation reactions carried out with labeled 18O2 unambiguously show that the oxygen atoms present in the MnIV dimers originate from O2. Based on experimental observations and DFT calculations, evidence is provided that these MnIV species comproportionate with a MnII precursor to yield μ‐oxo and/or μ‐hydroxo MnIII dimers. Our work highlights the delicate balance of reaction conditions to control the synthesis of non‐heme high‐valent μ‐oxo and μ‐hydroxo Mn species from MnII precursors and O2.  相似文献   

5.
High‐valent cobalt‐oxo intermediates are proposed as reactive intermediates in a number of cobalt‐complex‐mediated oxidation reactions. Herein we report the spectroscopic capture of low‐spin (S=1/2) CoIV‐oxo species in the presence of redox‐inactive metal ions, such as Sc3+, Ce3+, Y3+, and Zn2+, and the investigation of their reactivity in C? H bond activation and sulfoxidation reactions. Theoretical calculations predict that the binding of Lewis acidic metal ions to the cobalt‐oxo core increases the electrophilicity of the oxygen atom, resulting in the redox tautomerism of a highly unstable [(TAML)CoIII(O.)]2? species to a more stable [(TAML)CoIV(O)(Mn+)] core. The present report supports the proposed role of the redox‐inactive metal ions in facilitating the formation of high‐valent metal–oxo cores as a necessary step for oxygen evolution in chemistry and biology.  相似文献   

6.
The characterization of intermediates formed through the reaction of transition‐metal complexes with dioxygen (O2) is important for understanding oxidation in biological and synthetic processes. Here, the reaction of the diketiminate‐supported cobalt(I) complex LtBuCo with O2 gives a rare example of a side‐on dioxygen complex of cobalt. Structural, spectroscopic, and computational data are most consistent with its assignment as a cobalt(III)–peroxo complex. Treatment of LtBuCo(O2) with low‐valent Fe and Co diketiminate complexes affords isolable oxo species with M2O2 “diamond” cores, including the first example of a crystallographically characterized heterobimetallic bis(μ‐oxo) complex of two transition metals. The bimetallic species are capable of cleaving C−H bonds in the supporting ligands, and kinetic studies show that the Fe/Co heterobimetallic species activates C−H bonds much more rapidly than the Co/Co homobimetallic analogue. Thus heterobimetallic oxo intermediates provide a promising route for enhancing the rates of oxidation reactions.  相似文献   

7.
We propose a non‐radical mechanism for the conversion of methane into methanol by soluble methane monooxygenase (sMMO), the active site of which involves a diiron active center. We assume the active site of the MMOHQ intermediate, exhibiting direct reactivity with the methane substrate, to be a bis(μ‐oxo)diiron(IV ) complex in which one of the iron atoms is coordinatively unsaturated (five‐coordinate). Is it reasonable for such a diiron complex to be formed in the catalytic reaction of sMMO? The answer to this important question is positive from the viewpoint of energetics in density functional theory (DFT) calculations. Our model thus has a vacant coordination site for substrate methane. If MMOHQ involves a coordinatively unsaturated iron atom at the active center, methane is effectively converted into methanol in the broken‐symmetry singlet state by a non‐radical mechanism; in the first step a methane C? H bond is dissociated via a four‐centered transition state (TS1) resulting in an important intermediate involving a hydroxo ligand and a methyl ligand, and in the second step the binding of the methyl ligand and the hydroxo ligand through a three‐centered transition state (TS2) results in the formation of a methanol complex. This mechanism is essentially identical to that of the methane–methanol conversion by the bare FeO+ complex and relevant transition metal–oxo complexes in the gas phase. Neither radical species nor ionic species are involved in this mechanism. We look in detail at kinetic isotope effects (KIEs) for H atom abstraction from methane on the basis of transition state theory with Wigner tunneling corrections.  相似文献   

8.
Non‐heme iron oxygenases contain either monoiron or diiron active sites, and the role of the second iron in the latter enzymes is a topic of particular interest, especially for soluble methane monooxygenase (sMMO). Herein we report the activation of a non‐heme FeIII‐OOH intermediate in a synthetic monoiron system using FeIII(OTf)3 to form a high‐valent oxidant capable of effecting cyclohexane and benzene hydroxylation within seconds at ?40 °C. Our results show that the second iron acts as a Lewis acid to activate the iron–hydroperoxo intermediate, leading to the formation of a powerful FeV=O oxidant—a possible role for the second iron in sMMO.  相似文献   

9.
Many iron‐containing enzymes involve metal–oxygen oxidants to carry out O2‐dependent transformation reactions. However, the selective oxidation of C? H and C?C bonds by biomimetic complexes using O2 remains a major challenge in bioinspired catalysis. The reactivity of iron–oxygen oxidants generated from an FeII–benzilate complex of a facial N3 ligand were thus investigated. The complex reacted with O2 to form a nucleophilic oxidant, whereas an electrophilic oxidant, intercepted by external substrates, was generated in the presence of a Lewis acid. Based on the mechanistic studies, a nucleophilic FeII–hydroperoxo species is proposed to form from the benzilate complex, which undergoes heterolytic O? O bond cleavage in the presence of a Lewis acid to generate an FeIV–oxo–hydroxo oxidant. The electrophilic iron–oxygen oxidant selectively oxidizes sulfides to sulfoxides, alkenes to cis‐diols, and it hydroxylates the C? H bonds of alkanes, including that of cyclohexane.  相似文献   

10.
Pervanadyl (VO2+) complexes with N‐(aroyl)‐N′‐(picolinylidene)hydrazines (HL = Hpabh, Hpath and Hpadh; H stands for the dissociable amide hydrogen) are described. The Schiff bases were obtained by condensation of 2‐pyridine‐carboxaldehyde with benzhydrazide (Hpabh), 4‐methylbenzhydrazide (Hpath) and 4‐dimethylaminobenzhydrazide (Hpadh), respectively. The reaction of [VO(acac)2] and HL in acetonitrile in air affords the complexes of general formula [VO2L]. The diamagnetic nature and EPR silence confirm the +5 oxidation state of vanadium in these complexes. Infrared spectra of the complexes are consistent with the enolate form of the coordinated ligands. Electronic spectra show charge transfer bands in the range 486–233 nm. The complexes are redox active and display an irreversible reduction (–0.64 to –0.72 V vs. Ag/AgCl). The crystal structures of all the complexes have been determined. In each complex, the metal centre is in a distorted trigonal‐bipyramidal N2O3 coordination sphere formed by the pyridine‐N, the imine‐N and the deprotonated amide‐O donor L and two oxo groups. The planar ligand satisfies one equatorial and two axial positions. The other two equatorial positions are occupied by the two oxo groups. In the solid state, the molecules of each of the three complexes form a chain‐like arrangement via the azomethine‐H…oxo interactions. Interchain weak π‐π interactions lead to two dimensional networks for [VO2(pabh)] and [VO2(path)]. On the other hand, [VO2(padh)] forms a two‐dimensional network through interchain N‐methyl‐H…oxo interactions.  相似文献   

11.
Low‐valent iron centers are critical intermediates in chemical and bio‐chemical processes. Herein, we show the first example of a low‐valent FeI center stabilized in a high‐valent polyoxometalate framework. Electrochemical studies show that the FeIII‐functionalized molecular vanadium(V) oxide (DMA)[FeIIIClVV12O32Cl]3− (DMA=dimethylammonium) features two well‐defined, reversible, iron‐based electrochemical reductions which cleanly yield the FeI species (DMA)[FeIClVV12O32Cl]5−. Experimental and theoretical studies including electron paramagnetic resonance spectroscopy and density functional theory computations verify the formation of the FeI species. The study presents the first example for the seemingly paradoxical embedding of low‐valent metal species in high‐valent metal oxide anions and opens new avenues for reductive electron transfer catalysis by polyoxometalates.  相似文献   

12.
The structure of FeOx species supported on γ‐Al2O3 was investigated by using Fe K‐edge X‐ray absorption fine structure (XAFS) and X‐ray diffraction (XRD) measurements. The samples were prepared through the impregnation of iron nitrate on Al2O3 and co‐gelation of aluminum and iron sulfates. The dependence of the XRD patterns on Fe loading revealed the formation of α‐Fe2O3 particles at an Fe loading of above 10 wt %, whereas the formation of iron‐oxide crystals was not observed at Fe loadings of less than 9.0 wt %. The Fe K‐edge XAFS was characterized by a clear pre‐edge peak, which indicated that the Fe?O coordination structure deviates from central symmetry and that the degree of Fe?O?Fe bond formation is significantly lower than that in bulk samples at low Fe loading (<9.0 wt %). Fe K‐edge extended XAFS oscillations of the samples with low Fe loadings were explained by assuming an isolated iron‐oxide monomer on the γ‐Al2O3 surface.  相似文献   

13.
Iron(IV)–oxo intermediates are involved in oxidations catalyzed by heme and nonheme iron enzymes, including the cytochromes P450. At the distal site of the heme in P450 Compound I (FeIV–oxo bound to porphyrin radical), the oxo group is involved in several hydrogen‐bonding interactions with the protein, but their role in catalysis is currently unknown. In this work, we investigate the effects of hydrogen bonding on the reactivity of high‐valent metal–oxo moiety in a nonheme iron biomimetic model complex with trigonal bipyramidal symmetry that has three hydrogen‐bond donors directed toward a metal(IV)–oxo group. We show these interactions lower the oxidative power of the oxidant in reactions with dehydroanthracene and cyclohexadiene dramatically as they decrease the strength of the O? H bond (BDEOH) in the resulting metal(III)–hydroxo complex. Furthermore, the distal hydrogen‐bonding effects cause stereochemical repulsions with the approaching substrate and force a sideways attack rather than a more favorable attack from the top. The calculations, therefore, give important new insights into distal hydrogen bonding, and show that in biomimetic, and, by extension, enzymatic systems, the hydrogen bond may be important for proton‐relay mechanisms involved in the formation of the metal–oxo intermediates, but the enzyme pays the price for this by reduced hydrogen atom abstraction ability of the intermediate. Indeed, in nonheme iron enzymes, where no proton relay takes place, there generally is no donating hydrogen bond to the iron(IV)–oxo moiety.  相似文献   

14.
Water oxidation is a key reaction in natural photosynthesis and in many schemes for artificial photosynthesis. Inspired by energy challenges and the emerging understanding of photosystem II, the development of artificial molecular catalysts for water oxidation has become a highly active area of research in recent years. In this Focus Review, we describe recent achievements in the development of single‐site ruthenium catalysts for water oxidation with a particular focus on the overpotential of water oxidation. First, we introduce the general scheme to access the high‐valent ruthenium–oxo species, the key species of the water‐oxidation reaction. Next, the mechanisms of the O? O bond formation from the active ruthenium–oxo species are described. We then discuss strategies to decrease the onset potentials of the water‐oxidation reaction. We hope this Focus Review will contribute to the further development of efficient catalysts toward sustainable energy‐conversion systems.  相似文献   

15.
In this study, we theoretically investigated the mechanism underlying the high‐valent mono‐oxo‐rhenium(V) hydride Re(O)HCl2(PPh3)2 ( 1 ) catalyzed hydrosilylation of C?N functionalities. Our results suggest that an ionic SN2‐Si outer‐sphere pathway involving the heterolytic cleavage of the Si?H bond competes with the hydride pathway involving the C?N bond inserted into the Re?H bond for the rhenium hydride ( 1 ) catalyzed hydrosilylation of the less steric C?N functionalities (phenylmethanimine, PhCH=NH, and N‐phenylbenzylideneimine, PhCH=NPh). The rate‐determining free‐energy barriers for the ionic outer‐sphere pathway are calculated to be ~28.1 and 27.6 kcal mol?1, respectively. These values are slightly more favorable than those obtained for the hydride pathway (by ~1–3 kcal mol?1), whereas for the large steric C?N functionality of N,1,1‐tri(phenyl)methanimine (PhCPh=NPh), the ionic outer‐sphere pathway (33.1 kcal mol?1) is more favorable than the hydride pathway by as much as 11.5 kcal mol?1. Along the ionic outer‐sphere pathway, neither the multiply bonded oxo ligand nor the inherent hydride moiety participate in the activation of the Si?H bond.  相似文献   

16.
Formation of the O?O bond is considered the critical step in oxidative water cleavage to produce dioxygen. High‐valent metal complexes with terminal oxo (oxido) ligands are commonly regarded as instrumental for oxygen evolution, but direct experimental evidence is lacking. Herein, we describe the formation of the O?O bond in solution, from non‐heme, N5‐coordinate oxoiron(IV) species. Oxygen evolution from oxoiron(IV) is instantaneous once meta‐chloroperbenzoic acid is administered in excess. Oxygen‐isotope labeling reveals two sources of dioxygen, pointing to mechanistic branching between HAT (hydrogen atom transfer)‐initiated free‐radical pathways of the peroxides, which are typical of catalase‐like reactivity, and iron‐borne O?O coupling, which is unprecedented for non‐heme/peroxide systems. Interpretation in terms of [FeIV(O)] and [FeV(O)] being the resting and active principles of the O?O coupling, respectively, concurs with fundamental mechanistic ideas of (electro‐) chemical O?O coupling in water oxidation catalysis (WOC), indicating that central mechanistic motifs of WOC can be mimicked in a catalase/peroxidase setting.  相似文献   

17.
Metal–superoxo species are ubiquitous in metalloenzymes and bioinorganic chemistry and are known for their high reactivity and their ability to activate inert C? H bonds. The comparative oxidative abilities of M–O2.? species (M=CrIII, MnIII, FeIII, and CuII) towards C? H bond activation reaction are presented. These superoxo species generated by oxygen activation are found to be aggressive oxidants compared to their high‐valent metal–oxo counterparts generated by O???O bond cleavage. Our calculations illustrate the superior oxidative abilities of FeIII– and MnIII–superoxo species compared to the others and suggest that the reactivity may be correlated to the magnetic exchange parameter.  相似文献   

18.
Metal–superoxo species are ubiquitous in metalloenzymes and bioinorganic chemistry and are known for their high reactivity and their ability to activate inert C H bonds. The comparative oxidative abilities of M–O2.− species (M=CrIII, MnIII, FeIII, and CuII) towards C H bond activation reaction are presented. These superoxo species generated by oxygen activation are found to be aggressive oxidants compared to their high‐valent metal–oxo counterparts generated by O⋅⋅⋅O bond cleavage. Our calculations illustrate the superior oxidative abilities of FeIII– and MnIII–superoxo species compared to the others and suggest that the reactivity may be correlated to the magnetic exchange parameter.  相似文献   

19.
The present study focuses on the formation and reactivity of hydroperoxo–iron(III) porphyrin complexes formed in the [FeIII(tpfpp)X]/H2O2/HOO? system (TPFPP=5,10,15,20‐tetrakis(pentafluorophenyl)‐21H,23H‐porphyrin; X=Cl? or CF3SO3?) in acetonitrile under basic conditions at ?15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high‐spin [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] could be observed with the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O? O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo‐ to heterolytic O? O bond cleavage is observed for high‐ [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron‐rich porphyrin ligands, electron‐deficient [FeIII(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [FeIII(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)–oxo porphyrin π‐cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

20.
Bis(acetylacetonate)alumo‐oxo‐tetraphenyldisiloxane‐metal(II) dihydrates [(acac)2Al(O–SiPh2–O–SiPh2–O)]2M(H2O)2 (M = Mg, Fe, Co, Ni) were obtained from the corresponding acetyl‐acetonate‐dihydrates (acac)2M(H2O)2 by reaction with the alumosiloxane [O–Ph2Si–O–SiPh2–O]4Al4(OH)4. These new compounds display two acac ligands at the aluminum atoms as well as disilatrioxy chains linking the two aluminum atoms forming a (Al–O–Si–O–Si–O)2 cycle (X‐ray structure analyses). Within this cycle the divalent metal ions M2+, to which two water molecules in trans positions are linked, are installed in almost planar MO4 coordination spheres. Using water free (acac)2Ni a different product forms: both reactants combine in a 2:1 ratio to yield [O–Ph2Si–O–SiPh2–O]4Al4(OH)2O(OH2)Ni2(acac)4. Here, three of the acac ligands were transposed to the aluminum atoms. The nickel atoms are in a distorted octahedral coordination mode from oxygen atoms of the ligands. When iron(III)tris(acetylacetonate) reacts with the alumosiloxane [O–Ph2Si–O–SiPh2–O]3Al2O(OH)Fe2(acac)3 was isolated, in which the two iron atoms still display one of the acac ligands. One of the aluminum atoms is in a tetrahedral oxygen environment, whereas the other is in the center of a trigonal bi‐pyramid formed of oxygen atoms either of the siloxane or of acac. The iron atoms have five‐ or sixfold coordination from oxygen atoms of siloxane, acac, hydroxide or oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号