首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[CpR(OC)Mo(μ‐η2:2‐P2)2FeCpR′] as Educt for Heterobimetallic Dinuclear Clusters with P2 and CnRnP4‐n Ligands (n = 1, 2) The cothermolysis of [CpR(OC)Mo(μ‐η2:2‐P2)2FeCpR′] ( 1 ) and tBuC≡P ( 2 ) as well as PhC≡CPh ( 3 ) affords the heterobimetallic triple‐decker like dinuclear clusters [(Cp'''Mo)(Cp*′Fe)(P3CtBu)(P2)] ( 4 ), Cp''' = C5H2tBu3‐1,2,4, Cp*′ = C5Me4Et, and [(Cp*Mo)(Cp*Fe)(P2C2Ph2)(P2)] ( 5 ) with a bridging tri‐ and diphosphabutadiendiyl ligand. 4 and 5 have been characterized additionally by X‐ray crystallography.  相似文献   

2.
The chemistry of polyphosphorus cations has rapidly developed in recent years, but their coordination behavior has remained mostly unexplored. Herein, we describe the reactivity of [P5R2]+ cations with cyclopentadienyl metal complexes. The reaction of [CpArFe(μ‐Br)]2 (CpAr=C5(C6H4‐4‐Et)5) with [P5R2][GaCl4] (R=iPr and 2,4,6‐Me3C6H2 (Mes)) afforded bicyclo[1.1.0]pentaphosphanes ( 1‐R , R=iPr and Mes), showing an unsymmetric “butterfly” structure. The same products 1‐R were formed from K[CpAr] and [P5R2][GaCl4]. The cationic complexes [CpArCo(η4‐P5R2)][GaCl4] ( 2‐R [GaCl4], R=iPr and Cy) and [(CpArNi)23:3‐P5R2)][GaCl4] ( 3‐R [GaCl4]) were obtained from [P5R2][GaCl4] and [CpArM(μ‐Br)]2 (M=Co and Ni) as well as by using low‐valent “CpArMI” sources. Anion metathesis of 2‐R [GaCl4] and 3‐R [GaCl4] was achieved with Na[BArF24]. The P5 framework of the resulting salts 2‐R [BArF24] can be further functionalized with nucleophiles. Thus reactions with [Et4N]X (X=CN and Cl) give unprecedented cyano‐ and chloro‐functionalized complexes, while organo‐functionalization was achieved with CyMgCl.  相似文献   

3.
This contribution reports on a new family of NiII pincer complexes featuring phosphinite and functional imidazolyl arms. The proligands RPIMCHOPR′ react at room temperature with NiII precursors to give the corresponding complexes [(RPIMCOPR′)NiBr], where RPIMCOPRPCP‐{2‐(R′2PO),6‐(R2PC3H2N2)C6H3}, R=iPr, R′=iPr ( 3 b , 84 %) or Ph ( 3 c , 45 %). Selective N‐methylation of the imidazole imine moiety in 3 b by MeOTf (OTf=OSO2CF3) gave the corresponding imidazoliophosphine [(iPrPIMIOCOPiPr)NiBr][OTf], 4 b , in 89 % yield (iPrPIMIOCOPiPrPCP‐{2‐(iPr2PO),6‐(iPr2PC4H5N2)C6H3}). Treating 4 b with NaOEt led to the NHC derivative [(NHCCOPiPr)NiBr], 5 b , in 47 % yield (NHCCOPiPrPCC‐{2‐(iPr2PO),6‐(C4H5N2)C6H3)}). The bromo derivatives 3–5 were then treated with AgOTf in acetonitrile to give the corresponding cationic species [(RPIMCOPR)Ni(MeCN)][OTf] [R=Ph, 6 a (89 %) or iPr, 6 b (90 %)], [(RPIMIOCOPR)Ni(MeCN)][OTf]2 [R=Ph, 7 a (79 %) or iPr, 7 b (88 %)], and [(NHCCOPR)Ni(MeCN)][OTf] [R=Ph, 8 a (85 %) or iPr, 8 b (84 %)]. All new complexes have been characterized by NMR and IR spectroscopy, whereas 3 b , 3 c , 5 b , 6 b , and 8 a were also subjected to X‐ray diffraction studies. The acetonitrile adducts 6 – 8 were further studied by using various theoretical analysis tools. In the presence of excess nitrile and amine, the cationic acetonitrile adducts 6 – 8 catalyze hydroamination of nitriles to give unsymmetrical amidines with catalytic turnover numbers of up to 95.  相似文献   

4.
The cyclo‐P4 complexes [CpRTa(CO)24‐P4)] (CpR: Cp′′=1,3‐C5H3tBu2, Cp′′′=1,2,4‐C5H2tBu3) turned out to be predestined for the formation of hollow spherical supramolecules with non‐classical fullerene‐like topology. The resulting assemblies constructed with CuX (X=Cl, Br) showed a highly symmetric 32‐vertex core of solely four‐ and six‐membered rings. In some supramolecules, the inner cavity was occupied by an additional CuX unit. On the other hand, using CuI, two different supramolecules with either peanut‐ or pear‐like shapes and outer diameters in the range of 2–2.5 nm were isolated. Furthermore, the spherical supramolecules containing Cp′′′ ligands at tantalum are soluble in CH2Cl2. NMR spectroscopic investigations in solution revealed the formation of isomeric supramolecules owing to the steric hindrance caused by the third tBu group on the Cp′′′ ligand. In addition, a 2D coordination polymer was obtained and structurally characterized.  相似文献   

5.
Synthesis, Structure, and Photochemical Behavior of Olefine Iridium(I) Complexes with Acetylacetonato Ligands The bis(ethene) complex [Ir(κ2‐acac)(C2H4)2] ( 1 ) reacts with tertiary phosphanes to give the monosubstitution products [Ir(κ2‐acac)(C2H4)(PR3)] ( 2 – 5 ). While 2 (R = iPr) is inert toward PiPr3, the reaction of 2 with diphenylacetylene affords the π‐alkyne complex [Ir(κ2‐acac)(C2Ph2)(PiPr3)] ( 6 ). Treatment of [IrCl(C2H4)4] with C‐functionalized acetylacetonates yields the compounds [Ir(κ2‐acacR1,2)(C2H4)2] ( 8 , 9 ), which react with PiPr3 to give [Ir(κ2‐acacR1,2)(C2H4)(PiPr3)] ( 10 , 11 ) by displacement of one ethene ligand. UV irradiation of 5 (PR3 = iPr2PCH2CO2Me) and 11 (R2 = (CH2)3CO2Me) leads, after addition of PiPr3, to the formation of the hydrido(vinyl)iridium(III) complexes 7 and 12 . The reaction of 2 with the ethene derivatives CH2=CHR (R = CN, OC(O)Me, C(O)Me) affords the compounds [Ir(κ2‐acac)(CH2=CHR)(PiPr3)] ( 13 – 15 ), which on photolysis in the presence of PiPr3 also undergo an intramolecular C–H activation. In contrast, the analogous complexes [Ir(κ2‐acac)(olefin)(PiPr3)] (olefin = (E)‐C2H2(CO2Me)2 16 , (Z)‐C2H2(CO2Me)2 17 ) are photochemically inert.  相似文献   

6.
Insertion and Substitution Reaction of Methyl Formate with [Cp′2ZrCl(PHTipp)] – Molecular Structure of meso‐trans ‐[Cp′2ZrCl{OCH(PHTipp)2}] (Cp′ = η5‐C5MeH4, Tipp = 2,4,6‐Pri3C6H2) [Cp′2ZrCl(PHTipp)] ( 1 ) (Cp′ = η5‐C5MeH4, Tipp = 2,4,6‐Pri3C6H2) reacts with methyl formate with insertion and substitution to give [Cp′2ZrCl{OCH(PHTipp)2}] ( 2 ). 2 was characterized spectroscopically (1H, 31P NMR, IR, MS) and by X‐ray structure determination. Only the meso‐trans isomer is present in the solid state.  相似文献   

7.
Secondary Hydroxyalkylphosphanes: Synthesis and Characterization of Mono‐, Bis‐ and Trisalkoxyphosphane‐substituted Zirconium Complexes and the Heterobimetallic Trinuclear Complex [Cp2Zr{O(CH2)3PHMes(AuCl)}2] The secondary hydroxyalkylphosphanes RPHCH2OH [R = 2,4,6‐Me3C6H2 (Mes) ( 1 ), 2,4,6‐iPr3C6H2 (Tipp) ( 2 )], 1‐AdPH‐2‐OH‐cyclo‐C6H10 ( 3 ) and RPH(CH2)3OH [R = Ph ( 4 ), Mes ( 5 ), Tipp ( 6 ), Cy ( 7 ), tBu ( 8 )] were obtained from primary phosphanes RPH2 and formaldehyde ( 1 , 2 ) or from LiPHR and cyclohexene oxide ( 3 ) or trimethylene oxide ( 4 ‐ 8 ). Starting from 5 or 7 and [CpR2ZrMe2] [CpR = C5EtMe4 (Cp°), C5H5 (Cp), C5MeH4 (Cp′)], the monoalkoxyphosphane‐substituted zirconocene complexes [CpR2Zr(Me){O(CH2)3PHMes}] [CpR = Cp° ( 9 ), Cp ( 10 )] were prepared. With [CpR2ZrCl2], the bisalkoxyphosphane‐substituted complexes [Cp′2Zr{O(CH2)3PHMes}2] ( 11 ) and [Cp2Zr{O(CH2)3PHCy}2] ( 12 ) are obtained, and with [TpRZrCl3], the trisalkoxyphosphane‐substituted zirconium complexes [TpRZr{O(CH2)3PHMes}3] [TpR = trispyrazolylborato (Tp) ( 13 ), TpR = tris(3,5‐dimethyl)pyrazolylborato (Tp*) ( 14 )] are prepared. The reaction of 5 with [AuCl(tht)] (tht = tetrahydrothiophene) yielded the mononuclear complex [AuCl{PHMes(CH2)3OH}] ( 15 ). The trinuclear complex [Cp2Zr{O(CH2)3PHMes(AuCl)}2] ( 16 ) was obtained from [Cp2ZrCl2] and 15 . Compounds 1 ‐ 16 were characterized spectroscopically (1H‐, 31P‐, 13C‐NMR; IR; MS) and compound 2 also by crystal structure determination. The bis‐ and trisalkoxyphosphane‐substituted complexes 11‐14 and 16 were obtained as mixtures of two diastereomers which could not be separated.  相似文献   

8.
We report on an effective cluster expansion of CuBr‐linked aggregates by the increase of the steric bulk of the CpR ligand in the pentatopic molecules [CpRFe(η5‐P5)]. Using [CpBIGFe(η5‐P5)] (CpBIG=C5(4‐nBuC6H4)5), the novel multishell aggregate [{CpBIGFe(η5:2:1:1:1:1:1‐P5)}12(CuBr)92] is obtained. It shows topological analogy to the theoretically predicted I‐C140 fullerene molecule. The spherical cluster was comprehensively characterized by various methods in solution and in the solid state.  相似文献   

9.
By applying the proper stoichiometry of 1:2 to [CpRFe(η5‐P5)] and CuX (X=Cl, Br) and dilution conditions in mixtures of CH3CN and solvents like CH2Cl2, 1,2‐Cl2C6H4, toluene, and THF, nine spherical giant molecules having the simplified general formula [CpRFe(η5‐P5)]@[{CpRFe(η5‐P5)}12{CuX}25(CH3CN)10] (CpR5‐C5Me5 (Cp*); η5‐C5Me4Et (CpEt); X=Cl, Br) have been synthesized and structurally characterized. The products consist of 90‐vertex frameworks consisting of non‐carbon atoms and forming fullerene‐like structural motifs. Besides the mostly neutral products, some charged derivatives have been isolated. These spherical giant molecules show an outer diameter of 2.24 (X=Cl) to 2.26 nm (X=Br) and have inner cavities of 1.28 (X=Cl) and 1.20 nm (X=Br) in size. In most instances the inner voids of these nanoballs encapsulate one molecule of [Cp*Fe(η5‐P5)], which reveals preferred orientations of π–π stacking between the cyclo‐P5 rings of the guest and those of the host molecules. Moreover, π–π and σ–π interactions are also found in the packing motifs of the balls in the crystal lattice. Electrochemical investigations of these soluble molecules reveal one irreversible multi‐electron oxidation at Ep=0.615 V and two reduction steps (?1.10 and ?2.0 V), the first of which corresponds to about 12 electrons. Density functional calculations reveal that during oxidation and reduction the electrons are withdrawn or added to the surface of the spherical nanomolecules, and no Cu2+ species are involved.  相似文献   

10.
CpPEt2As4 (CpPEt=C5(4‐EtC6H4)5) ( 1 ) is synthesized by the reaction of CpPEt. radicals with yellow arsenic (As4). In solution an equilibrium of the starting materials and the product is found. However, 1 can be isolated and stored in the solid state without decomposition. As4 can be easily released from 1 under thermal or photochemical conditions. From powder samples of CpPEt2As4, yellow arsenic can be sublimed under rather mild conditions (T=125 °C). A similar behavior for the P4‐releasing agent was determined for the related phosphorus compound CpBIG2P4 ( 2 ; CpBIG=C5(4‐nBuC6H4)5). DFT calculations show the importance of dispersion forces for the stability of the products.  相似文献   

11.
A route to directly access mixed Al–Fe polyphosphide complexes was developed. The reactivity of pentaphosphaferrocene, [Cp*Fe(η5‐P5)] (Cp*=C5Me5), with two different low‐valent aluminum compounds was investigated. The steric and electronic environment around the [AlI] centre are found to be crucial for the formation of the resulting Al–Fe polyphosphides. Reaction with the sterically demanding [Dipp‐BDIAlI] (Dipp‐BDI={[2,6‐iPr2C6H3NCMe]2CH}?) resulted in the first Al‐based neutral triple‐decker type polyphosphide complex. For [(Cp*AlI)4], an unprecedented regioselective insertion of three [Cp*AlIII]2+ moieties into two adjacent P?P bonds of the cyclo‐P5 ring of [Cp*Fe(η5‐P5)] was observed. The regioselectivity of the insertion reaction could be rationalized by isolating an analogue of the reaction intermediate stabilized by a strong σ‐donor carbene.  相似文献   

12.
The coordination chemistry of the 1,2‐BN‐cyclohexanes 2,2‐R2‐1,2‐B,N‐C4H10 (R2=HH, MeH, Me2) with Ir and Rh metal fragments has been studied. This led to the solution (NMR spectroscopy) and solid‐state (X‐ray diffraction) characterization of [Ir(PCy3)2(H)22η2‐H2BNR2C4H8)][BArF4] (NR2=NH2, NMeH) and [Rh(iPr2PCH2CH2CH2PiPr2)(η2η2‐H2BNR2C4H8)][BArF4] (NR2=NH2, NMeH, NMe2). For NR2=NH2 subsequent metal‐promoted, dehydrocoupling shows the eventual formation of the cyclic tricyclic borazine [BNC4H8]3, via amino‐borane and, tentatively characterized using DFT/GIAO chemical shift calculations, cycloborazane intermediates. For NR2=NMeH the final product is the cyclic amino‐borane HBNMeC4H8. The mechanism of dehydrogenation of 2,2‐H,Me‐1,2‐B,N‐C4H10 using the {Rh(iPr2PCH2CH2CH2PiPr2)}+ catalyst has been probed. Catalytic experiments indicate the rapid formation of a dimeric species, [Rh2(iPr2PCH2CH2CH2PiPr2)2H5][BArF4]. Using the initial rate method starting from this dimer, a first‐order relationship to [amine‐borane], but half‐order to [Rh] is established, which is suggested to be due to a rapid dimer–monomer equilibrium operating.  相似文献   

13.
Two transition-metal atoms bridged by hydrides may represent a useful structural motif for N2 activation by molecular complexes and the enzyme active site. In this study, dinuclear MoIV-FeII complexes with bridging hydrides, CpRMo(PMe3)(H)(μ-H)3FeCp* ( 2 a ; CpR=Cp*=C5Me5, 2 b ; CpR=C5Me4H), were synthesized via deprotonation of CpRMo(PMe3)H5 ( 1 a ; CpR=Cp*, 1 b ; CpR=C5Me4H) by Cp*FeN(SiMe3)2, and they were characterized by spectroscopy and crystallography. These Mo−Fe complexes reveal the shortest Mo−Fe distances ever reported (2.4005(3) Å for 2 a and 2.3952(3) Å for 2 b ), and the Mo−Fe interactions were analyzed by computational studies. Removal of the terminal Mo−H hydride in 2 a – 2 b by [Ph3C]+ in THF led to the formation of cationic THF adducts [CpRMo(PMe3)(THF)(μ-H)3FeCp*]+ ( 3 a ; CpR=Cp*, 3 b ; CpR=C5Me4H). Further reaction of 3 a with LiPPh2 gave rise to a phosphido-bridged complex Cp*Mo(PMe3)(μ-H)(μ-PPh2)FeCp* ( 4 ). A series of Mo−Fe complexes were subjected to catalytic silylation of N2 in the presence of Na and Me3SiCl, furnishing up to 129±20 equiv of N(SiMe3)3 per molecule of 2 b . Mechanism of the catalytic cycle was analyzed by DFT calculations.  相似文献   

14.
Ethylene copolymerizations with norbornene (NBE) using half‐titanocenes containing imidazolin‐2‐iminato ligands, Cp′TiCl2[1,3‐R2(CHN)2C?N] [Cp′ = Cp ( 1 ), tBuC5H4 ( 2 ); R = tBu ( a ), 2,6‐iPr2C6H3 ( b )], have been explored in the presence of methylaluminoxane (MAO) cocatalyst. Complex 1a exhibited remarkable catalytic activity with better NBE incorporation, affording high‐molecular‐weight copolymers with uniform molecular weight distributions, whereas the tert‐BuC5H4 analog ( 2a ) showed low activity, and the resultant polymer prepared by the Cp‐2,6‐diisopropylphenyl analog ( 1b ) possessed broad molecular weight distribution. The microstructure analysis of the poly(ethylene‐co‐NBE)s prepared by 1a suggests the formation of random copolymers including two and three NBE repeating units. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2575–2580  相似文献   

15.
Bismuth diphenylphosphanides Bi(NONR)(PPh2) (NONR=[O(SiMe2NR)2], R=tBu, 2,6‐iPr2C6H3, Aryl) undergo facile decomposition via single‐electron processes to form reduced Bi and P species. The corresponding derivatives Bi(NONR)(PCy2) are stable. Reaction of the isolated BiII radical .Bi(NONAr) with white phosphorus (P4) proceeds with the reversible and selective activation of a single P?P bond to afford the bimetallic μ,η1:1‐bicyclo[1.1.0]tetraphosphabutane compound.  相似文献   

16.
Olefin polymerizations catalyzed by Cp′TiCl2(O‐2,6‐iPr2C6H3) ( 1 – 5 ; Cp′ = cyclopentadienyl group), RuCl2(ethylene)(pybox) { 7 ; pybox = 2,6‐bis[(4S)‐4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine}, and FeCl2(pybox) ( 8 ) were investigated in the presence of a cocatalyst. The Cp*TiCl2(O‐2,6‐iPr2C6H3) ( 5 )–methylaluminoxane (MAO) catalyst exhibited remarkable catalytic activity for both ethylene and 1‐hexene polymerizations, and the effect of the substituents on the cyclopentadienyl group was an important factor for the catalytic activity. A high level of 1‐hexene incorporation and a lower rE · rH value with 5 than with [Me2Si(C5Me4)(NtBu)]TiCl2 ( 6 ) were obtained, despite the rather wide bond angle of Cp Ti O (120.5°) of 5 compared with the bond angle of Cp Ti N of 6 (107.6°). The 7 –MAO catalyst exhibited moderate catalytic activity for ethylene homopolymerization and ethylene/1‐hexene copolymerization, and the resultant copolymer incorporated 1‐hexene. The 8 –MAO catalyst also exhibited activity for ethylene polymerization, and an attempted ethylene/1‐hexene copolymerization gave linear polyethylene. The efficient polymerization of a norbornene macromonomer bearing a ring‐opened poly(norbornene) substituent was accomplished by ringopening metathesis polymerization with the well‐defined Mo(CHCMe2Ph)(N‐2,6‐iPr2C6H3)[OCMe(CF3)2]2 ( 10 ). The key step for the macromonomer synthesis was the exclusive end‐capping of the ring‐opened poly(norbornene) with p‐Me3SiOC6H4CHO, and the use of 10 was effective for this polymerization proceeding with complete conversion. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4613–4626, 2000  相似文献   

17.
1,2,3,4‐Tetrasubstituted cyclopentadienes and indene derivatives with identical or different substituents were obtained in good to excellent isolated yields through a zirconocene‐ and CuCl‐mediated intermolecular coupling process. This synthetic procedure involved three organic partners, including one CH2I2, and two different or identical alkynes. Two alkynes or one diyne undergo Cp2ZrII‐mediated (Cp=η5‐C5H5) pair‐selective reductive coupling to afford the corresponding zirconacyclopentadiene derivatives, which react, in the presence of CuCl and 1,3‐dimethyl‐3,4,5,6‐tetrahydro‐2(1 H)‐pyrimidinone (DMPU), with CH2I2 through intermolecular followed by intramolecular coupling to afford the cyclopentadiene derivatives. An application of the prepared tetrasubstituted cyclopentadiene derivatives was demonstrated by the facile synthesis of the corresponding zirconocene complexes [(4RCp)2ZrCl2] and [(4RCp)2ZrR′2] (R′=Me, Et, or nBu). The unique 1,2,3,4‐tetrasubstituted cyclopentadiene ligands and the corresponding metallocenes are expected to have further applications in organometallic chemistry and organic synthesis.  相似文献   

18.
Reactivity studies of the thermally stable ruthenostannylene complex [Cp*(IXy)(H)2Ru Sn Trip] ( 1 ; IXy=1,3‐bis(2,6‐dimethylphenyl)imidazol‐2‐ylidene; Cp*=η5‐C5Me5; Trip=2,4,6‐iPr3C6H2) with a variety of organic substrates are described. Complex 1 reacts with benzoin and an α,β‐unsaturated ketone to undergo [1+4] cycloaddition reactions and afford [Cp*(IXy)(H)2RuSn(κ2‐O,O‐OCPhCPhO)Trip] ( 2 ) and [Cp*(IXy)(H)2RuSn(κ2‐O,C‐OCPhCHCHPh)Trip] ( 3 ), respectively. The reaction of 1 with ethyl diazoacetate resulted in a tin‐substituted ketene complex [Cp*(IXy)(H)2RuSn(OC2H5)(CHCO)Trip] ( 4 ), which is most likely a decomposition product from the putative ruthenium‐substituted stannene complex. The isolation of a ruthenium‐substituted stannene [Cp*(IXy)(H)2RuSn(Flu)Trip] ( 5 ) and stanna‐imine [Cp*(IXy)(H)2RuSn(κ2‐N,O‐NSO2C6H4Me)Trip] ( 6 ) complexes was achieved by treatment of 1 with 9‐diazofluorene and tosyl azide, respectively.  相似文献   

19.
Reactivity studies of the thermally stable ruthenostannylene complex [Cp*(IXy)(H)2Ru? Sn? Trip] ( 1 ; IXy=1,3‐bis(2,6‐dimethylphenyl)imidazol‐2‐ylidene; Cp*=η5‐C5Me5; Trip=2,4,6‐iPr3C6H2) with a variety of organic substrates are described. Complex 1 reacts with benzoin and an α,β‐unsaturated ketone to undergo [1+4] cycloaddition reactions and afford [Cp*(IXy)(H)2RuSn(κ2‐O,O‐OCPhCPhO)Trip] ( 2 ) and [Cp*(IXy)(H)2RuSn(κ2‐O,C‐OCPhCHCHPh)Trip] ( 3 ), respectively. The reaction of 1 with ethyl diazoacetate resulted in a tin‐substituted ketene complex [Cp*(IXy)(H)2RuSn(OC2H5)(CHCO)Trip] ( 4 ), which is most likely a decomposition product from the putative ruthenium‐substituted stannene complex. The isolation of a ruthenium‐substituted stannene [Cp*(IXy)(H)2RuSn(?Flu)Trip] ( 5 ) and stanna‐imine [Cp*(IXy)(H)2RuSn(κ2‐N,O‐NSO2C6H4Me)Trip] ( 6 ) complexes was achieved by treatment of 1 with 9‐diazofluorene and tosyl azide, respectively.  相似文献   

20.
Reaction of (TBBP)AlMe ? THF with [Cp*2Zr(Me)OH] gave [(TBBP)Al(THF)?O?Zr(Me)Cp*2] (TBBP=3,3’,5,5’‐tetra‐tBu‐2,2'‐biphenolato). Reaction of [DIPPnacnacAl(Me)?O?Zr(Me)Cp2] with [PhMe2NH]+[B(C6F5)4]? gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)?O?Zr(THF)Cp2]+[B(C6F5)4]? (DIPPnacnac=HC[(Me)C=N(2,6‐iPr2?C6H3)]2). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40–47 kcal mol?1) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six‐membered‐ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal‐Me‐C angle that prevents synchronized bond‐breaking and making. A more‐likely pathway is dissociation of the Al‐O‐Zr complex into an aluminate and the active polymerization catalyst [Cp*2ZrMe]+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号