首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combination of exceptional functionalities offered by 3D graphene‐based macrostructures (GBMs) has attracted tremendous interest. 2D graphene nanosheets have a high chemical stability, high surface area and customizable porosity, which was extensively researched for a variety of applications including CO2 adsorption, water treatment, batteries, sensors, catalysis, etc. Recently, 3D GBMs have been successfully achieved through few approaches, including direct and non‐direct self‐assembly methods. In this review, the possible routes used to prepare both 2D graphene and interconnected 3D GBMs are described and analyzed regarding the involved chemistry of each 2D/3D graphene system. Improvement of the accessible surface of 3D GBMs where the interface exchanges are occurring is of great importance. A better control of the chemical mechanisms involved in the self‐assembly mechanism itself at the nanometer scale is certainly the key for a future research breakthrough regarding 3D GBMs.  相似文献   

2.
3.
Free‐standing 2D porous nanomaterials have attracted considerable interest as ideal candidates of 2D film electrodes for planar energy storage devices. Nevertheless, the construction of well‐defined mesopore arrays parallel to the lateral surface, which facilitate fast in‐plane ionic diffusion, is a challenge. Now, a universal interface self‐assembly strategy is used for patterning 2D porous polymers, for example, polypyrrole, polyaniline, and polydopamine, with cylindrical mesopores on graphene nanosheets. The resultant 2D sandwich‐structured nanohybrids are employed as the interdigital microelectrodes for the assembly of planar micro‐supercapacitors (MSCs), which deliver outstanding volumetric capacitance of 102 F cm?3 and energy density of 2.3 mWh cm?3, outperforming most reported MSCs. The MSCs display remarkable flexibility and superior integration for boosting output voltage and capacitance.  相似文献   

4.
Localized molecular self‐assembly processes leading to the growth of nanostructures exclusively from the surface of a material is one of the great challenges in surface chemistry. In the last decade, several works have been reported on the ability of modified or unmodified surfaces to manage the self‐assembly of low‐molecular‐weight hydrogelators (LMWH) resulting in localized supramolecular hydrogel coatings mainly based on nanofiber architectures. This Minireview highlights all strategies that have emerged recently to initiate and localize LMWH supramolecular hydrogel formation, their related fundamental issues and applications.  相似文献   

5.
We report the synthesis of telechelic poly(norbornene) and poly(cyclooctene) homopolymers by ring‐opening metathesis polymerization (ROMP) and their subsequent functionalization and block copolymer formation based on noncovalent interactions. Whereas all the poly(norbornene)s contain either a metal complex or a hydrogen‐bonding moiety along the polymer side‐chains, together with a single hydrogen‐bonding‐based molecular recognition moiety at one terminal end of the polymer chain. These homopolymers allow for the formation of side‐chain‐functionalized AB and ABA block copolymers through self‐assembly. The orthogonal natures of all side‐ and main‐chain self‐assembly events were demonstrated by 1H NMR spectroscopy and isothermal titration calorimetry. The resulting fully functionalized block copolymers are the first copolymers combining both side‐ and main‐chain self‐assembly, thereby providing a high degree of control over copolymer functionalization and architecture and bringing synthetic materials one step closer to the dynamic self‐assembly structures found in nature.  相似文献   

6.
Providing a quantitative understanding of the thermodynamics involved in molecular adsorption and self‐assembly at a nanostructured carbon material is of fundamental importance and finds outstanding applications in the graphene era. Here, we study the effect of edge perchlorination of coronene, which is a prototypical polyaromatic hydrocarbon, on the binding affinity for the basal planes of graphite. First, by comparing the desorption barrier of hydrogenated versus perchlorinated coronene measured by temperature‐programmed desorption, we quantify the enhancement of the strength of physisorption at the single‐molecule level though chlorine substitution. Then, by a thermodynamic analysis of the corresponding monolayers based on force‐field calculations and statistical mechanics, we show that perchlorination decreases the free energy of self‐assembly, not only enthalpically (by enhancing the strength of surface binding), but also entropically (by decreasing the surface concentration). The functional advantage of a chemically modulated 2D self‐assembly is demonstrated in the context of the molecule‐assisted liquid‐phase exfoliation of graphite into graphene.  相似文献   

7.
A facile high yield, self‐assembly process that leads to a terpyridine‐based, three‐dimensional, bis‐rhomboidal‐shaped, molecular wheel is reported. The desired coordination‐driven supramolecular wheel involves eight structurally distorted tristerpyridine (tpy) ligands possessing a 60° angle between the adjacent tpy units and twelve Zn2+ ions. The tpy ligand plays dual roles in the self‐assembly process: two are staggered at 180° to create the internal hub, while six produce the external rim. The wheel can be readily generated by mixing the tpy ligand and Zn2+ in a stoichiometric ratio of 2:3; full characterization is provided by ESI‐MS, NMR spectroscopy, and TEM imaging.  相似文献   

8.
Peptide‐mediated self‐assembly is a prevalent method for creating highly ordered supramolecular architectures. Herein, we report the first example of orthogonal C?X???X?C/C?X???π halogen bonding and hydrogen bonding driven crystalline architectures based on synthetic helical peptides bearing hybrids of l ‐sulfono‐γ‐AApeptides and natural amino acids. The combination of halogen bonding, intra‐/intermolecular hydrogen bonding, and intermolecular hydrophobic interactions enabled novel 3D supramolecular assembly. The orthogonal halogen bonding in the supramolecular architecture exerts a novel mechanism for the self‐assembly of synthetic peptide foldamers and gives new insights into molecular recognition, supramolecular design, and rational design of biomimetic structures.  相似文献   

9.
Graphene is a 2D sp2‐hybridized carbon sheet and an ideal material for the adsorption‐based separation of organic pollutants. However, such potential applications of graphene are largely limited, owing to their poor solubility and extensive aggregation properties through graphene? graphene interactions. Herein, we report the synthesis of graphene‐based composites with γ‐Fe2O3 nanoparticle for the high‐performance removal of endocrine‐disrupting compounds (EDC) from water. The γ‐Fe2O3 nanoparticles partially inhibit these graphene? graphene interactions and offer water dispersibility of the composite without compromising much of the high surface area of graphene. In their dispersed form, the graphene component offers the efficient adsorption of EDC, whilst the magnetic iron‐oxide component offers easier magnetic separation of adsorbed EDC.  相似文献   

10.
The concentration effect on a two‐dimensional (2D) self‐assembly of 4, 4′‐dihexadecyloxy‐benzophenon (DHB) has been investigated by scanning tunneling microscopy. The self‐assembly of DHB at the phenyloctane/graphite interface was concentration dependent. Under low concentration, the DHB molecules were adsorbed intactly on the graphite surface. With the increasing of concentration, one of side chains connecting the conjugated moiety stretched into the liquid phase. The coexistence of two self‐assembled structures was observed in a moderate concentration. The result indicated that the van der Waals interactions between the molecules and the graphite lattice were decreasing with the increasing concentration. After the samples were placed in ambient conditions over 24 h, a different self‐assembled structure was obtained on the gas/solid interface, in which the DHB molecules were adsorbed on the surface with only one of the side chains. Both the benzophenon core and the other side chain were extended to the gas phase. The results demonstrated that concentration played an important role in forming the 2D molecular self‐assembly and provided an efficient approach for the control of the DHB molecular nanostructure. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The self‐organization of multicomponent supramolecular systems involving a variety of two‐dimensional (2 D) polygons and three‐dimensional (3 D) cages is presented. Nine self‐organizing systems, SS1 – SS9 , have been studied. Each involves the simultaneous mixing of organoplatinum acceptors and pyridyl donors of varying geometry and their selective self‐assembly into three to four specific 2 D (rectangular, triangular, and rhomboid) and/or 3 D (triangular prism and distorted and nondistorted trigonal bipyramidal) supramolecules. The formation of these discrete structures is characterized using NMR spectroscopy and electrospray ionization mass spectrometry (ESI‐MS). In all cases, the self‐organization process is directed by: 1) the geometric information encoded within the molecular subunits and 2) a thermodynamically driven dynamic self‐correction process. The result is the selective self‐assembly of multiple discrete products from a randomly formed complex. The influence of key experimental variables ‐ temperature and solvent ‐ on the self‐correction process and the fidelity of the resulting self‐organization systems is also described.  相似文献   

12.
The combination of oligonucleotides and synthetic supramolecular systems allows for novel and long‐needed modes of regulation of the self‐assembly of both molecular elements. Discotic molecules were conjugated with short oligonucleotides and their assembly into responsive supramolecular wires studied. The self‐assembly of the discotic molecules provides additional stability for DNA‐duplex formation owing to a cooperative effect. The appended oligonucleotides allow for positional control of the discotic elements within the supramolecular wire. The programmed assembly of these hybrid architectures can be modulated through the DNA, for example, by changing the number of base pairs or salt concentration, and through the discotic platform by the addition of discotic elements without oligonucleotide handles. These hybrid supramolecular‐DNA structures allow for advanced levels of control over 1D dynamic platforms with responsive regulatory elements at the interface with biological systems.  相似文献   

13.
Polymeric nanosheets organized by molecular building blocks bearing specifically oriented reactive groups provide abundant and versatile strategies for tailoring structure and chemical functionality periodically over extended length scales that complement graphene. Here we report the bulk synthesis of free‐standing polymeric nanosheets via spatially confined polymerization from an elaborate 2D supramolecular system composed of two liquid‐crystalline lamellar bilayer membranes of a self‐assembled nonionic surfactant—dodecylglyceryl itaconate (DGI)—sandwiched by a water layer. By employing a covalent polymerization on the lamellar bilayer membranes, single‐bilayer‐thick (4.2 nm), and large area (greater than 100 μm2) polymeric nanosheets of bilayer membranes are achieved. The polymeric nanosheets could serve as a well‐defined 2D platform for post‐functionalization for producing advanced hybrid materials by introducing the reactions on the hydroxyl groups at the head of DGI on the outer surfaces.

  相似文献   


14.
Two bola‐amphiphilic small molecules, based on the diphenylanthracene skeleton structure, namely, BASM‐1 and its functionalized small molecule BASM‐2 , were designed and synthesized. The self‐assembly behavior and mechanism of these two molecules in aqueous solution were studied. The supramolecular two‐dimensional (2D) layer and the covalent 2D polymers were, respectively, prepared by these two molecules. What is more, the transverse size of the covalent 2D polymer laminates increased with the extension of the polymerization time. Atomic force microscopy results showed that both free‐standing single‐layer 2D polymers and few layer laminates with two to three molecular layers were obtained. So our work provides a simple and efficient method for directly preparing independent both supramolecular 2D polymers and covalent 2D polymers in liquid phase which is of great significance. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1748–1755  相似文献   

15.
We introduce divalent 3D DNA origami cuboids as truly monodisperse colloids and harness their ability for precision functionalization with defined patches and defined numbers of supramolecular binding motifs. We demonstrate that even adamantane/β‐cyclodextrin host/guest inclusion complexes of moderate association strength can induce efficient supracolloidal fibrillization at high dilution of the 3D DNA Origami as a result of cooperative multivalency. We show details on the assembly of Janus and non‐Janus 3D DNA origami into supracolloidal homo‐ and heterofibrils with respect to multivalency effects, electrostatic screening, and stoichiometry. We believe that the merger of 3D DNA origami with colloidal self‐assembly and supramolecular motifs provides new synergies at the interface of these disciplines to better understand multivalency effects, to promote structural complexity, and add non‐DNA assembling and switching mechanisms to DNA nanoscience.  相似文献   

16.
A polyoxometalate‐based molecular triangle has been synthesized through the metal‐driven self‐assembly of covalent organic/inorganic hybrid oxo‐clusters with remote pyridyl binding sites. The new metallomacrocycle was unambiguously characterized by using a combination of 1H NMR spectroscopy, 2D diffusion NMR spectroscopy (DOSY), electrospray ionization travelling wave ion mobility mass spectrometry (ESI‐TWIM‐MS), small‐angle X‐ray scattering (SAXS) and molecular modelling. The collision cross‐sections obtained from TWIM‐MS and the hydrodynamic radii derived from DOSY are in good agreement with the geometry‐optimized structures obtained by using theoretical calculations. Furthermore, SAXS was successfully employed and proved to be a powerful technique for characterizing such large supramolecular assemblies.  相似文献   

17.
Self‐assembly to create molecular and nanostructures is typically performed at the thermodynamic minimum. To achieve dynamic functionalities, such as adaptability, internal feedback, and self‐replication, there is a growing focus on out‐of‐equilibrium systems. This report presents the dynamic self‐assembly of an artificial host–guest system at an interface, under control by a dissipative electrochemical process using (electrical) energy, resulting in an out‐of‐equilibrium system exhibiting a supramolecular surface gradient. The gradient, its steepness, rate of formation, and complex surface composition after backfilling, as well as the surface compositions after switching between the different states of the system, are assessed and supported by modelling. Our method shows for the first time an artificial surface‐confined out‐of‐equilibrium system. The electrochemical process parameters provide not only control over the system in time, but also in space.  相似文献   

18.
Hybrid films of multilayer graphene (MG) containing amorphous carbon (a‐C) were synthesized on Al substrates by microwave surface‐wave plasma chemical vapor deposition. Raman scattering and surface transmission electron microscopy showed that the carbon films contained a large quantity of MG when a radio frequency (RF) substrate bias was not applied. Amorphization of graphene in the carbon film was promoted by applying an RF bias, which generated Ar+ in the plasma. The bandgaps of the films were found to increase as the Raman intensity ratios between the 2D‐band (at 2700 cm?1) and D‐band (at 1350 cm?1) decreased, indicating the formation of a‐C. The MG/a‐C all‐sp2 phase of carbon hybrid films exhibited an increase in current density under 5 mW/cm2 of AM1.5G solar simulated irradiation as the RF bias increased because of Ar+‐induced amorphization of the graphene. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Magnetic and fluorescent assemblies of iron‐oxide nanoparticles (NPs) were constructed by threading a viologen‐based ditopic ligand, DPV2+, into the cavity of cucurbituril (CB[7]) macrocycles adsorbed on the surface of the NPs. Evidence for the formation of 1:2 inclusion complexes that involve DPV2+ and two CB[7] macrocycles was first obtained in solution by 1H NMR and emission spectroscopy. DPV2+ was found to induce self‐assembly of nanoparticle arrays (DPV2+?CB[7]NPs) by bridging CB[7] molecules on different NPs. The resulting viologen‐crosslinked iron‐oxide nanoparticles exhibited increased saturation magnetization and emission properties. This facile supramolecular approach to NP self‐assembly provides a platform for the synthesis of smart and innovative materials that can achieve a high degree of functionality and complexity and that are needed for a wide range of applications.  相似文献   

20.
Hierarchical self‐assembly of complex supramolecular architectures allows for the emergence of novel properties at each level of complexity. The reaction of the ligand components A and B with FeII cations generates the [2×2] grid‐type functional building modules 1 and 2 , presenting spin‐transition properties and preorganizing an array of coordination sites that sets the stage for a second assembly step. Indeed, binding of LaIII ions to 1 and of AgI ions to 2 leads to a 1D columnar superstructure 3 and to a wall‐like 2D layer 4 , respectively, with concomitant modulation of the magnetic properties of 1 and 2 . Thus, to each of the two levels of structural complexity generated by the two sequential self‐assembly steps corresponds the emergence of novel functional features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号