首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Thiol‐ene click reaction was successfully employed for chemical modification of graphene oxide (GO) by one‐step synthesis. Herein, 2,2‐azobis(2‐methylpropionitrile) (AIBN) was used as thermal catalyst and cysteamine hydrochloride (HS?(CH2)2?NH2HCl) was used as thiol‐containing compound, which is incorporated to GO surface upon reaction with the C=C bonds. The hydrochloride acts as protecting group for the amine, which is finally eliminated by adding sodium hydroxide. The modified GO contains both S‐ and N‐containing groups (NS‐GO). We found that NS‐GO sheets form good dispersion in water, ethanol, and ethylene glycol. These graphene dispersions can be processed into functionalized graphene film. Besides, it was demonstrated that NS‐GO was proved to be an excellent host matrix for platinum nanoparticles. The developed method paves a new way for graphene modification and its functional nanocomposites.  相似文献   

2.
The preparation of chemically modified graphene (CMG) generally involves the reduction of graphite oxide (GO) by using various reducing reagents. Herein, we report a free‐radical‐promoted synthesis of CMG, which does not require any conventional reductant. We demonstrated that the phenyl free radical can efficiently promote the conversion of GO into CMG under mild conditions and produces phenyl‐functionalized CMG. This pseudo‐“reduction” process is attributed to a free‐radical‐mediated elimination of the surface‐attached oxygen‐containing functionalities. This work illustrates a new strategy for preparing CMG that is alternative to the conventional means of chemical reduction. Furthermore, the phenyl‐functionalized graphene shows an excellent performance as an electrode material for lithium‐battery applications.  相似文献   

3.
Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium‐ion batteries (SIBs) because of the existence of H‐bonding between the layers and ultralow electrical conductivity which impedes the Na+ and e? transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali‐metal‐ion (Li+, Na+, K+)‐functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na‐storage capabilities. Electrochemical tests demonstrated that sodium‐ion‐functionalized GO (GNa) has shown outstanding Na‐storage performance in terms of excellent rate capability and long‐term cycle life (110 mAh g?1 after 600 cycles at 1 A g?1) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na‐storage capabilities of functionalized GO. These calculations have indicated that the Na?O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na‐storage properties among all comparatives functionalized by other alkali metal ions.  相似文献   

4.
In this paper, using thiolated graphene oxide (GO‐O‐SH) as substrate, gold nanorods (AuNRs) covalently linked to the GO surface by in‐situ seed growth method were first reported. The as‐prepared composites were characterized by UV–vis spectrum, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT‐IR). Experimental results indicated that the introduction of short flexible organic chain between GO and AuNRs contributed to the homogenous synthesis of gold rods, and uniform gold nanorods with aspect ratio within 3~8 were covalently linked to the surface of GO with high stability and yield. The strategy represented an outstanding improvement in comparison to the traditional route for fabricating GO@AuNRs composites. Furthermore, based on coupling of the two nanomaterials, the composites could act as high sensitive Raman probe with limit of detection (LOD) reaching 1 × 10?12 M.  相似文献   

5.
Gold nanoparticles supported on thiol‐functionalized reduced graphene oxide (AuNPs@RGO‐SH) were found to be a biocompatible, stable, recyclable heterogeneous catalyst. The catalysts were characterized by field emission scanning electron microscopy (FE‐SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT‐IR), thermal gravimetric analysis (TGA), and X‐ray diffraction spectroscopy (XRD). The obtained catalyst was used in synthesis of tetrahydro‐4H‐chromenes in aqueous media with excellent yields. The catalysts could be easily separated from the reaction mixture and recovered several times without a significant loss of activity.  相似文献   

6.
《Electroanalysis》2018,30(5):852-858
In this study, a novel signal‐amplified strategy for sensitive electrochemical sandwiched immunoassay of carcinoembryonic antigen (CEA) was constructed based on aminofunctionalized graphene oxide (GO‐NH2) supported AgNPs used as catalytic labels of secondary anti‐CEA and β‐galactosidase (β‐Gal), Meanwhile, sulfhydrylation single‐wall carbon nanotubes (SWCNTs‐SH) as substrate materials embellished gold electrode through Au‐SH and connected with gold nanoparticles to form anti‐CEA/AuNPs/SWCNTs‐SH/Au sensing platform through layer‐by‐layer. In the presence of analyte CEA, a sandwich‐type immunoassay format was employed for determination of CEA by using the labeled β‐Gal toward the reduction of p‐aminophenyl galactopyranoside (PAPG) and the redox reaction of AgNPs. Under optimal conditions, the increase in the current was proportional to the concentration of CEA from 0.1 pg/mL to 200 ng/mL. The detection limit (LOD) was 0.036 pg/mL CEA at 3σ. The electrochemical immunoassay displayed an acceptable precision, selectivity, stability. Clinical serum specimens were assayed with the method, and the results were in acceptable agreement with those obtained from the referenced electrochemiluminescent method.  相似文献   

7.
A new prototype of reversible self‐assembly between functionalized gold and titanium dioxide nanoparticles (NPs) utilizing hydrogen bonding interactions was developed and established. The gold nanoparticles were functionalized with a Hamilton‐receptor functionality bearing a thiol moiety as anchoring group. The titanium dioxide nanoparticles were modified with cyanurate derivatives which contained phosphonic acids as anchoring groups. The host–guest type interaction between two functionalized nanoparticles yielded a highly integrated nanoparticle system in chloroform. Moreover, by presenting a competing ligand in an exchange reaction, the product of self‐assembly can be segregated into the individual soluble components of functionalized nanoparticles. The self‐assembly and the exchange reaction were followed and monitored in detail by UV/Vis spectroscopy. The structure of the self‐assembly product was investigated using scanning electron microscopy (SEM) and small‐angle X‐ray scattering (SAXS).  相似文献   

8.
《中国化学》2017,35(9):1445-1451
Graphene oxide (GO ) and its functionalized derivatives have attracted increasing attention in medical treatment. Herein, a reduction sensitive PEI‐GO ‐SS ‐TPP was synthesized for photodynamic therapy. More than 80% porphyrin release was observed in the presence of 10 mmol•L−1 DTT in one day. The confocal laser scanning microscopy confirmed that the cell uptake efficiency of PEI‐GO‐SS‐TPP was remarkably enhanced as compared to free porphyrin which was significantly dependent on incubation time. For photodynamic therapy, GSH‐OEt could effectively increase the photodynamic therapy efficiency of PEI‐GO ‐SS ‐TPP . Compared with free porphyrin, the toxicity from PEI‐GO ‐SS ‐TPP is much higher with a low IC50 (2.1 µg/mL ) value. All results indicate that the PEI‐GO ‐SS ‐TPP PSs are promising for photodynamic therapy.  相似文献   

9.
Polysiloxanes are commonly used in a myriad of applications, and the “click” nature of the thiol‐ene reaction is well suited for introducing alternative functionalities or for crosslinking these ubiquitous polymers. As such, understanding of the thiol‐ene reaction in the presence of silicones is valuable and would lead to enhanced methodologies for modification and crosslinking. Here, the thiol‐ene reaction kinetics were investigated in functionalized oligosiloxanes having varying degrees of thiol functionalization (SH), π–π interactions (from diphenyls, DP), and ene types (C?C). In the ene‐functionalized oligomers, π–π interactions were controlled through the use of dioctyl repeats (DO). The polymerization rate and rate‐limiting steps were determined for all systems containing an allyl‐functionalized oligomer, and rates ranging from 0.10 to 0.54 mol L?1 min?1 were seen. The rate‐limiting step varied with the oligomer composition; examples of rate‐limited propagation (5:3:2 C?C:DP:DO/1:1 SH:DP) or chain transfer (5:3:2 C?C:DP:DO/3:1 SH:DP) were found in addition to cases with similar reaction rate constants (5:2:3 C?C:DP:DO/1:1 SH:DP). None of the siloxanes were found to exhibit autoacceleration despite their relatively high viscosities. Instead, the allyl‐, vinyl‐, and acrylate‐functionalized siloxanes were all found to undergo unimolecular termination based on their high α scaling values (0.98, 0.95, and 0.82, respectively) in the relation RpRiα. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
Graphene is the best‐studied 2D material available. However, its production is still challenging and the quality depends on the preparation procedure. Now, more than a decade after the outstanding experiments conducted on graphene, the most successful wet‐chemical approach to graphene and functionalized graphene is based on the oxidation of graphite. Graphene oxide has been known for more than a century; however, the structure bears variable large amounts of lattice defects that render the development of a controlled chemistry impossible. The controlled oxo‐functionalization of graphene avoids the formation of defects within the σ‐framework of carbon atoms, making the synthesis of specific molecular architectures possible. The scope of this review is to introduce the field of oxo‐functionalizing graphene. In particular, the differences between GO and oxo‐functionalized graphene are described in detail. Moreover analytical methods that allow determining lattice defects and functional groups are introduced followed by summarizing the current state of controlled oxo‐functionalization of graphene.  相似文献   

11.
A new soluble donor‐acceptor type poly(N‐vinylcarbazole)‐covalently functionalized graphene oxide (GO‐PVK) has been synthesized by reaction of DDAT (S‐1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐aceticacid)trithiocarbonate)‐PVK with GO‐toluene‐2,4‐diisocynate. The incorporation of sufficient amount of PVK chains makes the modified GO nanosheets readily dispersible in organic solvents. The resulting material exhibits an enhanced solubility of 10 mg/mL in organic solvents. Covalent grafting of PVK onto the edge and surface of GO nanosheets did not change the carbazole absorption in the ultraviolet region, but substantially reduced the absorption intensity of GO in the visible region. The intensity of the emission band of GO‐PVK at 437 nm was a little bit quenched when compared with that of DDAT‐PVK, suggesting intramolecular quenching from PVK to GO. Such intramolecular quenching process may involve energy or electron transfer between the excited singlet states of the PVK moiety and the GO moiety. The HOMO/LUMO values and the energy bandgap of GO‐PVK experimentally estimated by the onset of the redox potentials are ?5.60, ?3.58, and 2.02 eV, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2642–2649, 2010  相似文献   

12.
Graphene oxide (GO) has triggered significant attention as a new type of self‐assembly membrane material. However, the low filtration flux and unstable performance of GO membrane limit its practical application. Hence, in this work, layered double hydroxides (LDHs), as a 2D material with double‐layer channel structure and positive electricity, were self‐assembled with GO at weight ratio of 7:3 by electrostatic interaction. Then, the GO/LDH hybrids combined with polydopamine (PDA) to obtain stable and high‐flux GO‐based membranes through vacuum filtration and the structure and morphology of as‐prepared samples were characterized by FT‐IR, XRD, XPS, and SEM. Furthermore, the separation performance and surface electronegativity of membranes were tested via pure water flux, rejection efficiency, recycle experiments, and zeta potential. Results revealed that the stability and flux of composite membrane were enhanced significantly compared with neat GO‐based membrane. Further, the dye rejection rate of methylene blue (MB) is higher than Congo red (CR) and rhodamine B (Rh B) and reached to 99.8%.  相似文献   

13.
ABC type miktoarm star copolymer with polystyrene (PS), poly(ε‐caprolactone) (PCL) and poly(ethylene glycol) (PEG) arms was synthesized using controlled polymerization techniques in combination with thiol‐ene and copper catalyzed azide‐alyne “click” reactions (CuAAC) and characterized. For this purpose, 1‐(allyloxy)‐3‐azidopropan‐2‐ol was synthesized as the core component in a one‐step reaction with high yields (96%). Independently, ω‐thiol functionalized polystyrene (PS‐SH) was synthesized in a two‐step protocol with a very narrow molecular weight distribution. The bromo end function of PS obtained by atom transfer radical polymerization was first converted to xanthate function and then reacted with 1, 2‐ethandithiol to yield desired thiol functional polymer (PS‐SH). The obtained polymer was grafted onto the core by thiol‐ene click chemistry. In the following stage, ε‐caprolactone monomer was polymerized from the core by ring opening polymerization (ROP) using tin octoate as catalyst through hydroxyl groups to form the second arm. Finally, PEG‐acetylene, which was simply synthesized by the esterification of Me‐PEG and 5‐pentynoic acid, was clicked onto the core through azide groups present in the structure. The intermediates at various stages and the final miktoarm star copolymer were characterized by 1H NMR, FTIR, and GPC measurements. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
The use of a thiol‐functionalized nonionic surfactant to stabilize spherical gold nanoparticles in water induces the spontaneous formation of polyrotaxanes at the nanoparticle surface in the presence of the macrocycle α‐cyclodextrin. Whereas using an excess of surfactant an amorphous gold nanocomposite is obtained, under controlled drying conditions the self‐assembly between the surface supramolecules provides large and homogenous supercrystals with hexagonal close packing of nanoparticles. Once formed, the self‐assembled supercrystals can be fully redispersed in water. The reversibility of the crystallization process may offer an excellent reusable material to prepare gold nanoparticle inks and optical sensors with the potential to be recovered after use.  相似文献   

15.
A new polyaniline (PANI)‐functionalized graphene oxide (GO‐PANI) was prepared by using an in situ oxidative graft polymerization of aniline on the surface of GO. Its highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), ionization potential (IP), and electron affinity (EA) values experimentally estimated by the onset of the redox potentials were ?5.33, ?3.57, 5.59, and 3.83 eV, respectively. A bistable electrical‐switching effect was observed in electronic device with the GO‐PANI film sandwiched between the indium tin oxide (ITO) and Al electrodes. This device exhibited two accessible conductivity states, that is, the low‐conductivity (OFF) state and the high‐conductivity (ON) state, and can be switched to the ON state under a negative electrical sweep, and can also be reset to the initial OFF state by a reverse (positive) electrical sweep. The ON state is nonvolatile and can withstand a constant voltage stress of ?1 V for 3 h and 108 read cycles at ?1 V under ambient conditions. The nonvolatile nature of the ON state and the ability to write, read, and erase the electrical states, fulfill the functionality of a rewritable memory. An ON/OFF current ratio of more than 104 at ?1 V achieved in this memory device is high enough to promise a low misreading rate through the precise control of the ON and OFF states. The mechanism associated with the memory effects was elucidated from molecular simulation results.  相似文献   

16.
Polyethylene (PE), alkoxyamine‐ and thiol‐terminated PEs (PE‐TEMPO and PE‐SH, respectively) can be converted to macroradicals using a peroxide, a thermal cleavage of the alkoxyamine and a hydrogen transfer reaction of the thiol, respectively. The addition of these macroradicals to multiwalled carbon nanotubes (MWCNTs) were compared by performing grafting reactions at 160 °C in 1,3‐dichlorobenzene as solvent. Raman spectroscopy was utilized to follow the introduction of PE on the MWCNTs' surface while thermogravimetric and elemental analysis indicated the extent of this grafting. The grafting ratio was found to be in the range of 19–36 wt %. PE‐functionalized MWCNTs were imaged by transmission electronic microscopy showing a PE layer with various thicknesses covering the surface of nanotubes. It was found that higher levels of grafting were obtained using PE‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy and PE‐SH rather than a radical grafting reaction in which dicumyl peroxide, PE, and MWCNTs were reacted. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
《先进技术聚合物》2018,29(2):941-950
Due to the narrow layer spacing, graphene oxide (GO) composite membrane usually exhibits a relatively low water flux in the process of wastewater treatment. In this study, GO was reduced to reduced graphene oxide through a bio‐inspired method, which was functionalized modified by poly‐dopamine (PDA). Then a series of PDA/reduced graphene oxide sheet films were prepared by vacuum filtration on the surface of cellulose acetate membrane (under the pressure of −0.1 MPa). The result indicated that the novel membranes had an excellent stability owing to the cross‐link of PDA. In addition, the hydrophilicity of membrane was increased significantly after PDA modification, which presented a superior water flux than pure GO composite membrane. More importantly, as‐prepared membranes were successfully applied for the removal of dyes (including Congo red, methylene blue, and rhodamine B) and heavy mental ion (Cu(II)) from simulated wastewater. This work might provide a new method for preparation and application of GO composite membranes.  相似文献   

18.
Polymer composites with carbon‐based nano‐fillers have generated significant interest in industry and science because of their multifunctional and valuable properties. An APA‐functionalized GO nanofiller (GO–APA) was prepared through the reaction between graphene oxide (GO) and 3‐aminophenyl acetylene (APA) in dimethylformide (DMF) with ammonia hydroxide. Furthermore the PDSEPE/GO–APA composites were made from Poly(dimethysilyleneethynylenephenylene ethynylene) (PDSEPE) and GO–APA. FT‐IR, XRD, XPS, SEM, DSC and TGA techniques were used to characterize the chemical compositions and physical and chemical properties of GO–APA and PDSEPE/GO–APA composites. As a result, the prepared PDSEPE/GO–APA composites show high thermal stabilities, excellent electrical conductivity and good flexural strength. When the weight percentage of GO–APA reaches 0.5%, the PDSEPE/GO–APA composite electrical conductivity increases by 6 orders of magnitude and the flexural strength improves by nearly 33% compared with that of cured PDSEPE resin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Ionic liquid 1‐allyl‐3‐methyl‐imidazolium chloride (AMICl) is used to fine‐tune the surface properties of graphene oxide (GO) sheets for fabricating ionic liquid functionalized GO (GO‐IL)/styrene‐butadiene rubber (SBR) nanocomposites. The morphology and structure of GO‐IL are characterized using atomic force microscope, X‐ray diffraction, differential scanning calorimetry, X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV‐vis spectra and Raman spectra. The interaction between GO and AMICl molecules as well as the effects of GO‐IL on the mechanical properties, thermal conductivity and solvent resistance of SBR are thoroughly studied. It is found that AMICl molecules can interact with GO via the combination of hydrogen bond and cation–π interaction. GO‐IL can be well‐dispersed in the SBR matrix, as confirmed by X‐ray diffraction and scanning electron microscope. Therefore, the SBR nanocomposites incorporating GO‐IL exhibit greatly enhanced performance. The tensile strength, tear strength, thermal conductivity and solvent resistance of GO‐IL/SBR nanocomposite with 5 parts per hundred rubber GO‐IL are increased by 505, 362, 34 and 31%, respectively, compared with neat SBR. This method provides a new insight into the fabrication of multifunctional GO‐based rubber composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Poly(styrene‐bN‐isopropylacrylamide) (PSt‐b‐PNIPAM) with dithiobenzoate terminal group was synthesized by reversible addition‐fragmentation‐transfer polymerization. The dithiobenzoate terminal group was converted into thiol terminal group with NaBH4, resulting thiol‐terminated PSt‐b‐PNIPAM‐SH. After PSt‐b‐PNIPAM‐SH assembled into core‐shell micelles in aqueous solution, gold nanoparticles were in situ surface‐linked onto the micelles through the reduction of gold precursor anions with NaBH4. Thus, temperature responsive core/shell micelles of PSt‐b‐PNIPAM surface‐linked with gold nanoparticles (PSt‐b‐PNIPAM‐Au micelles) were obtained. Transmission Electron Microscopy revealed the successful linkage of gold nanoparticles and the dependence of the number of gold nanoparticles per micelle on the molar ratio of HAuCl4 to thiol group of PSt‐b‐PNIPAM. Dynamic Light Scattering analysis demonstrated thermo‐responsive behavior of PSt‐b‐PNIPAM‐Au micelles. Changing the temperature of PSt‐b‐PNIPAM‐Au micelles led to the shrinkage of PNIPAM shell and allowed to tune the distance between gold nanoparticles. Ultraviolet–visible (UV–vis) spectroscopy clearly showed the reversible modulation of UV–vis absorbance of PSt‐b‐PNIPAM‐Au micelles upon heating and cooling. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5156–5163, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号