首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
An electrochemical cold vapor generation system with polyaniline modified graphite electrode as cathode material was developed for Hg (II) determination by coupling with atomic fluorescence spectrometry. This electrochemical cold vapor generation system with polyaniline/graphite electrode exhibited higher sensitivity; excellent stability and lower memory effect compared with graphite electrode electrochemical cold vapor generation system. The relative standard deviation was 2.7% for eleven consecutive measurements of 2 ng mL− 1 Hg (II) standard solution and the mercury limit of detection for the sample blank solution was 1.3 рg mL− 1 (3σ). The accuracy of the method was evaluated through analysis of the reference materials GBW09101 (Human hair) and GBW 08517 (Laminaria Japonica Aresch) and the proposed method was successfully applied to the analysis of human hairs.  相似文献   

2.
The combination of more efficient flow-through electrochemical mercury cold vapor generation with its in-situ trapping in a graphite tube atomizer is described. This coupled technique has been optimized to attain the maximum sensitivity for Hg determination and to minimize the limits of detection and determination. A laboratory constructed thin-layer flow-through cell with a platinum cathode served as the cold vapor generator. Various cathode arrangements with different active surface areas were tested. Automated sampling equipment for the graphite atomizer with an untreated fused silica capillary was used for the introduction of the mercury vapor. The inner surface of the graphite tube was covered with a gold foil placed against the sampling hole.  相似文献   

3.
Grases F  Forteza R  March JG  Cerda V 《Talanta》1985,32(2):123-126
A very simple reaction-rate thermometric technique is used for determination of iodide (5-20 ng ml ), based on its catalytic action on the cerium(IV)-arsenic(III) reaction, and for determination of mercury(II) (1.5-10 ng ml ) and silver(I) (2-10 ng ml ), based on their inhibitory effect on this reaction. The reaction is followed by measuring the rate of temperature increase. The method suffers from very few interferences and is applied to determination of iodide in biological and inorganic samples, and Hg(II) and Ag(I) in pharmaceutical products.  相似文献   

4.
《Analytical letters》2012,45(13):2217-2230
Abstract

(Acetylacetone)‐2‐thiol‐phenyleneimine (H2L) immobilized on an anion‐exchange resin (Dowex) was used for separation and removal of mercury from natural water samples and for preconcentration prior to its determination by cold vapor inductively coupled plasma atomic emission spectroscopy. The metal was eluted from the column using a solution of 10% thiourea in 0.1 M HCl. The modified resin is higly selective with an exchange capacity of 1.60 mmol g?1. Various parameters like pH, column flow rate, and desorbing agents are optimized. The proposed method has a linear calibration range of 15–1000 ng/ml Hg(II), with a relative standard deviation at the 15 ng/ml level of 3.5%. The precision of the method (evaluated as the relative standard deviation obtained after analyzing six series of five replicates) was ±4.2% at the 50 ng/ml level of Hg(II). The method has been used for routine determination of trace levels of mercury species in natural waters. The potential application of modified resin for the removal of mercury(II) from two natural water samples (top water and lake water) spiked with 50 ng/ml of mercury (II) was studied by ICP‐AES, and the results proved that excellent percent extraction of mercury(II) from both natural water samples was obtained by column method using modified resin.  相似文献   

5.
We report on the synthesis of polymeric nanoparticles (PNPs) containing a tetrakis(3-hydroxyphenyl)porphyrin, and their use for the separation of mercury(II) ion. The PNPs were prepared by bulk polymerization from methacrylic acid (the monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator) and the mercury(II) complex of 5,10,15,20-tetrakis(3-hydroxyphenyl)-porphyrin. The Hg(II) ion was then removed by treatment with dilute hydrochloric acid. The PNPs were characterized by colorimetry, FT-IR spectroscopy, and scanning electron microscopy. The material is capable of binding Hg(II) from analyte samples. Bound Hg(II) ions can be eluted with dilute nitric acid and then quantified by cold vapor AAS. The extraction efficiency, the effects of pH, preconcentration and leaching times, sample volume, and of the nature, concentration and volume of eluent were investigated. The maximum adsorption capacity of the PNPs is 249 mg g?1, the relative standard deviation of the AAS assay is 2.2 %, and the limit of detection (3σ) is 8 ng.L?1. The nanoparticles exhibit excellent selectivity for Hg(II) ion over other metal ions and were successfully applied to the selective extraction and determination of Hg(II) ion in spiked water samples.
Figure
Schematic presentation of leaching process of mercury(II) ion from the prepared IIP  相似文献   

6.
A fully automated flow injection (FI) system utilizing the extraordinary oxidation power of bromine monochloride (BrCl) for the transformation of dissolved mercury species to Hg(2+) and oxidation of dissolved organic carbon (DOC) has been developed and coupled to cold vapor (CV) atomic fluorescence spectrometry (AFS) for highly sensitive mercury detection. The system can be applied to natural waters, sea water as well as freshwater and provides a detection limit as low as 16 pg Hg l(-1) from a sample volume of 7 ml. The relative standard deviation is about 4-10%. A 3-fold measurement of one sample is completely processed within 15 min. Dissolved organic carbon, chloride and iodide ions are tolerated in concentrations of 15 mg DOC l(-1), >21 g Cl(-)l(-1), and 10 mg I(-)l(-1). Validation of the proposed method yielded a good recovery of total mercury in a moorland water sample and in the certified reference material ORMS-3, river water. Investigation of eight real water samples with mercury concentrations in the range of 0.3-1.4 ng l(-1) also confirmed the suitability of the proposed method.  相似文献   

7.
A simple, fast, and sensitive method for speciation and determination of As (III, V) and Hg (II, R) in human blood samples based on ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) and flow injection hydride generation/cold vapor atomic absorption spectrometry (FI-HG/CV-AAS) has been developed. Tetraethylthiuram disulfide, mixed ionic liquids (hydrophobic and hydrophilic ILs) and acetone were used in the DLLME step as the chelating agent, extraction and dispersive solvents, respectively. Using a microwave assisted-UV system, organic mercury (R-Hg) was converted to Hg(II) and total mercury amount was measured in blood samples by the presented method. Total arsenic content was determined by reducing As(V) to As(III) with potassium iodide and ascorbic acid in a hydrochloric acid solution. Finally, As(V) and R-Hg were determined by mathematically subtracting the As(III) and Hg(II) content from the total arsenic and mercury, respectively. Under optimum conditions, linear range and detection limit (3σ) of 0.1–5.0 µg L?1 and 0.02 µg L?1 for As(III) and 0.15–8.50 µg L?1 and 0.03 µg L?1 for Hg(II) were achieved, respectively, at low RSD values of < 4% (N = 10). The developed method was successfully applied to determine the ultra-trace amounts of arsenic and mercury species in blood samples; the validation of the method was performed using standard reference materials.  相似文献   

8.
Li X  Wang Z 《Analytica chimica acta》2007,588(2):179-183
A novel method for determination of mercury was developed using an intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry (IF-ECVG-AFS). The mercury vapor was generated on the surface of glassy carbon cathode in the flow cell. The operating conditions for the electrochemical generation of mercury vapor were investigated in detail, and the interferences from various ions were evaluated. Under the optimized conditions, no evident memory effects of mercury were observed. The calibration curve was linear up to 5 μg L−1 Hg at 0.54 A cm−2. A detection limit of 1.2 ng L−1 Hg and a relative standard deviation of 1.8% for 1 μg L−1 Hg were obtained. The accuracy of method was verified by the determination of mercury in the certified reference human hair. The ECVG avoided the use of reductants, thereby greatly reducing the contamination sources. In addition, the manifold of IF-ECVG-AFS was simple and amenable to automation.  相似文献   

9.
In this study we firstly report a new electrolytic cold vapor generation system for mercury determination on Pt/Ti cathode in the presence of organic acid catholyte. Comparing with the traditional inorganic acid, formic acid increased the signal intensity of Hg vapor from electrolytic generation on Pt cathode and reduced the impact of cathode erosion on the stability of signal intensity. Moreover, formic acid has better interference tolerance. The introduction location for carrier gas is probably the most important factor that influences the signal intensity of Hg from electrolytic vapor generation. The effects of the electrolytic conditions and interference ions on the ECVG have been studied. Under the optimized conditions, the detection limit (3σ) of Hg (II) in aqueous solutions is 1.4 ng L−1; a relative standard deviation of 2.3% for 1 μg L−1 Hg was obtained. The accuracy of this method was verified by the determination of mercury in the certified reference materials. This system has been applied satisfactorily to the determination of Hg in Traditional Chinese Medicines samples.  相似文献   

10.
Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2′-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4 M HNO3. The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 μmol g−1 for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 μg L−1 (3σ), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 μg L−1 Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample.  相似文献   

11.
A continuously operating monitoring method for total mercury at sub-ng/ml level in environmental and biological samples by cold vapour atomic-absorption spectrometry with NaBH4 as a reductant was developed. The mercury vapour generator and absorption cell closed-end by quartz were used in this study. The detection limit (S/N = 3) and relative standard deviation of 12 determinations of 10 ng/ml Hg(II) were 0.11 ng/ml and 1.1%, respectively. The range of standard calibration curve was 0–50 ng/ml Hg, The proposed method was successfully applied to the completely continuous monitoring of total mercury in waste water, sediments and pork liver.  相似文献   

12.
2-Thiophenecarboxaldhyde is chemically bonded to silica gel surface immobilized monoamine, ethylenediamine and diethylenetriamine by a simple Schiff’s base reaction to produce three new SP-extractors, phases (I-III). The selectivity properties of these phases toward Hg(II) uptake as well as eight other metal ions: Ca(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) were extensively studied and evaluated as a function of pH of metal ion solution and equilibrium shaking time by the batch equilibrium technique. The data obtained clearly indicate that the new SP-extractors have the highest affinity for retention of Hg(II) ion. Their Hg(II) uptake in mmol g−1 and distribution coefficient as log Kd values are always higher than the uptake of any other metal ion along the range of pH used (pH 1.0-10.0). The uptake of Hg(II) using phase I was 2.0 mmol g−1 (log Kd 6.6) at pH 1.0 and 2.0. 1.8 mmol g−1 (log Kd 4.25), 1.6 mmol g−1 (log Kd 3.90) and 1.08 mmol g−1 (log Kd 3.37) at pH 3.0, 5.0 and 8.0, respectively. Selective separation of Hg(II) from the other eight coexisting metal ions under investigation was achieved successfully using phase I at pH 2.0 either under static or dynamic conditions. Hg(II) was completely retained while Ca(II), Co(II) and Cd(II) ions were not retained. Ni(II), Cu(II), Zn(II), Pb(II) and Fe(III) showed very low percentage retention values to be 0.74, 0.97, 3.5 and 6.3%, respectively. Moreover, the high recovery values (95.5 ± 0.5, 95.8 ± 0.5 and 99.0% ± 1.0) of percolating two liters of doubly distilled water, drinking tap water and Nile river water spiked with 5 ng/l of Hg(II) over 100 mg of phase I packed in a minicolumn and used as a thin layer enrichment bed demonstrate the accuracy and validity of the new SP-extractors for preconcentration of the ultratrace amount of spiked Hg(II) prior to the determination by borohydride generation atomic absorption spectrometry (AAS) with no matrix interference. The detection limit (3σ) for Hg(II) based on enrichment factor 1000 was 4.75 pg/ml. The precision (R.S.D.) obtained for different amounts of mercury was in the range 0.52-1.01% (N = 3) at the 25-100 ng/l level.  相似文献   

13.
Svancara I  Vytras K  Hua C  Smyth MR 《Talanta》1992,39(4):391-396
The determination of mercury(II) ions can be achieved by monitoring the decrease in the oxidation peak of the tetraphenylborate ion in the presence of this metal ion at a carbon paste electrode. The reaction between mercury(II) and the tetraphenylborate ion results in the formation of diphenylmercury, thus providing the method with good selectivity over other metal ions. Using anodic stripping voltammetry in a neutral electrolyte, a linear dependence of the decrease of peak height was observed on increasing the mercury(II) concentration in the range 1 x 10(-6)-8 x 10(-9)M mercury(II). Zinc(II), cadmium(II), lead(II), nickel(II), cobalt(II), tin(II), potassium(I) and ammonium(I) ions did not interfere at a 1000-fold concentration excess. Iron(III) and chromium(III) did not interfere at a 250-fold and 50-fold concentration excess, respectively. Following masking procedures, copper(II), bismuth(III) and silver(I) did not interfere at a 100-fold concentration excess. The method can be used to determine the concentration of mercury(II) in natural waters contaminated by this metal.  相似文献   

14.
The first detailed determination of mercury(II) [Hg(II)] and monomethylmercury cation (MeHg+) concentrations in eelgrass (Zostera marina L.) is described. The rapid and simple method includes digestion by the new reagent tetrabutylammonium bromide/potassium hydroxide, derivatization by sodium borohydride and detection by hydride generation–cold vapor atomic fluorescence spectrometry. Mercury in leaves/stems and roots/rhizomes of eelgrass samples collected near Adams Point of the Great Bay Estuary, NH, from May to November of the 1997 growing season was speciated. The seasonal ranges of concentrations in leaves and stems of eelgrass are: Hg(II), 14.9–40.4 ng Hg g−1 dry weight; MeHg+, 1.06–3.89 ng Hg g−1 dry weight. MeHg+ content averaged 6.9% of total mercury. Analogous values for roots and rhizomes are: Hg(II) 15.4–57.7 ng Hg g−1 dry weight; MeHg+ 0.91–2.41 ng Hg g−1 dry weight; MeHg+ averaged 6.4% of total mercury. The non‐parametric Kendall test showed that Hg(II) and MeHg+ concentrations in leaves and stems increased from May to July, then decreased. For roots and rhizomes the Kendall test showed that Hg(II) concentrations were unchanged from May to August, then decreased, and that MeHg+ concentrations decreased throughout the growing season. The non‐parametric Wilcoxon Signed‐Ranks method showed no systematic difference in Hg(II) or MeHg+ concentrations between leaves/stems and roots/rhizomes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Kiekens P  Temmerman E  Verbeek F 《Talanta》1984,31(9):693-701
The reduction of Hg(II) at a glassy-carbon electrode in various electrolytes has been studied by rotating ring-disc voltammetry. Reduction proceeds directly to metallic mercury in a single 2-electron step. However, at the foot of the wave, and only during the first reduction sweep after pretreatment of the electrode surface, a small amount of Hg(I) species is detected at the ring. The appearance of an Hg(I) intermediate is most pronounced in sulphuric acid solution. The reduction of Hg(II) is found to proceed irreversibly and to be of first order. At sufficiently negative potentials the reduction is convective-diffusion controlled. Stripping voltammetric experiments indicate that the dissolution of mercury gives Hg(II) in complexing electrolytes. In non-complexing electrolytes the initially formed Hg(II) reacts with mercury atoms on the electrode surface to give Hg(I). During electrodissolution, two stripping peaks may be observed as a result of underpotential adsorption of mercury on glassy carbon. The difference in peak potential between the adsorption (mono) layer peak and the bulk mercury peak has been related to the difference in work functions of the deposit (mercury) and substrate (carbon). A rotating glassy-carbon electrode has been used for the anodic stripping determination of mercury. When an appropriate amount of a cation such as cadmium(II) or copper(II) is added to the test solution, mercury down to 2 x 10(-9)M (0.4 ng ml ) can be determined in acidified thiocyanate electrolyte with a relative standard deviation of about 22%.  相似文献   

16.
Mercury (II) ion-selective PVC membrane sensor based on ethyl-2-benzoyl-2-phenylcarbamoyl acetate (EBPCA) as a novel nitrogen containing sensing material is successfully developed. The sensor exhibits good linear response of 30 mV per decade within the concentration range 10(-6)-10(-3) mol l(-1) Hg(II). The sensor shows good selectivity for mercury (II) ion in comparison with alkali, alkaline earth, transition and heavy metal ions. The EBPCA-based sensor is suitable for use with aqueous solutions of pH 2.0-4.5 and exhibits minimal interference by Ag(I) and Fe(III), which are known to interfere with other previously suggested sensors. The nature and composition of the sensing material and its mercury complex are examined using Fourier-transform infrared analysis, elemental analysis and X-ray fluorescence techniques. The proposed sensor is applied as a sensor for the determination of Hg(II) content in some amalgam alloys. The results show good correlation with data obtained by atomic absorption spectrometric method.  相似文献   

17.
A sensitive dip-and-read test strip for the determination of mercury in aqueous samples based on the inhibition of urease reaction by the ion has been developed. The strip has a circular sensing zone that containing two layers: the top layer is a cellulose acetate membrane where urease is immobilized on it; the bottom layer is a pH indicator wafer that is impregnated with urea. The principle of the measurement is based on the disappearance of a yellow spot on the pH indicator wafer. The elapsing time until the disappearance of the spot which depends on the concentration of mercury(II) ion is measured with a stopwatch. Under the experimental conditions, as low as 0.2 ng/ml mercury can be observed with the detection range from 0.2 to 200 ng/ml in water. Organomercury compounds give essentially the same response as inorganic mercury. Heavy-metal ions such as Ag(I), Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) as well as other sample matrixes basically do not interfere with the mercury measurement.  相似文献   

18.
Abstract

A new spectrophotometric FIA method for total mercury determination in water is proposed for the 5-40ng ml range. The method is based on the inhibitory effect of Hg(II) in the catalytic action of iodides on the As(III)-Ce(IV) reaction. By means of preconcentration techniques using KMnO4 traps, ppt levels of mercury in water can be detected.  相似文献   

19.
Non-dispersive atomic fluorescence spectrometry (NDAFS) coupled with vapor generation (VG) sample introduction was applied to the determination of the concentrations of hazardous heavy metals, such as arsenic, cadmium, lead and mercury, in seawater, soils and total airborne particulate matter (PM) collected around the Xiamen area in China. Almost 100% sample introduction efficiency was achieved by using thiourea and ascorbic acid for the pre-reduction of As(V) to As(III), K3Fe(CN)6 and tartaric acid for pre-oxidation of Pb(II) to Pb(IV), and masking the interferences arising from the co-existing transition metals to As, Cd, Hg and Pb during their vapor generation process. Moreover, a novel sample pretreatment device was developed to avoid the loss of mercury, lead, cadmium and arsenic during sample pretreatment. With such methods, the detection limit (DL) of arsenic, cadmium, lead and mercury was down to 0.08, 0.03, 0.05, 0.01 ng mL(-1) (3sigma), respectively. The relative standard deviations (RSD, n = 11) for arsenic, cadmium, lead and mercury at 10 ng mL(-1) were 0.9%, 1.6%, 1.3% and 2.0%, respectively. The concentrations of hazardous heavy metals in the environmental samples collected in Xiamen, China are in the range from 0.02 +/- 0.001 ng mL(-1) in seawater to 15.3 +/- 0.2 microg g(-1) in soils. Besides flame/GF-AAS and ICP-AES/MS, VG-NDAFS should be another choice for the determination of hazardous heavy metals in environmental samples.  相似文献   

20.
A new kinetic method for the determination of Hg(II) based on its inhibitory effect on the Pd(II)-catalysed reaction between Co(III)-EDTA and hypophosphite is proposed. The reaction is followed spectrophotometrically at 540 nm by measuring the induction period. Both the influence of the reaction variables and the interference of many ions have been studied. A mechanism for the inhibition process is also proposed. Under the selected experimental conditions of 2.7 x 10(-1)M Co(III)-EDTA, pH-3.2 Britton-Robinson buffer, 0.3M H(2)PO(-)(2), 0.35 mug/ml Pd(II), and temperature 18 +/- 0.2 degrees , Hg(II) was determined in the range 13-120 ng/ml. The method was applied to the determination of Hg(II) in sphalerites and pharmaceuticals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号